
INTRODUCTION

Due to the fluid nature of the early stages of the design process, 
it is difficult to obtain deterministic product design evaluations. 
This is primarily due to the flexibility of the design at this stage, 
namely that there can be multiple interpretations of a single design 
concept. However, it is important for designers to understand how 
these design concepts are likely to fulfil the original specification, 
thus enabling the designer to select or bias towards solutions with 
favourable outcomes. One approach is to create a stochastic model 
of the design domain. This paper tackles the issues of using a 
product database to induce a Bayesian model that represents the 
relationships between the design parameters and characteristics. 
A greedy learning algorithm is presented and illustrated using a 
simple case study.

BACKGROUND

The design literature is agreed on the need to perform a broad 
search of the concept space before investing in a more detailed 
analysis of the final solution concept. Industry’s market pressures 
requires this search to be performed rapidly. To perform such a 
search methodically requires a conceptual design model that 
encompasses the breadth of potential solutions for a given product.

The conceptual design space is challenging to model due to the 
fluid nature of the design at this point. There are two components 
required for any useful design model: (1) design representation 
containing the design parameters and characteristics and (2) the 
relationships between these parameters and characteristics. At the 
conceptual design stage, the representation needs to cover a vast 
number of variants with significantly different behaviours. For this 
reason, the conceptual design stage has resisted formal modelling.

Domain experts are able to navigate through the conceptual design 
space. It is argued that domain experts have a tacit model of the 
design space, constructed through their experience in the domain 
[1]. Some researchers have attempted to extract this model through 
various methods, however it represents a difficult and expensive 
task. There have also been investigations into using Machine 
Learning techniques to analyse product data sets and extract design 
models. This approach suffers from generating models that are to 
complex for human designers to understand and verify.

This paper describes research investigating an approach that aims 
to use product databases for inducing a model, while restricting 
this model to human cognitive limits. A probabilistic approach 
is adopted to represent the fluidity that is core to the conceptual 

design stage. It is worth noting that when inducing a design model 
from previous products, the resulting model will to a large extent 
only represent the characteristics and relationships observed 
from those examples. However, this is not a great problem as a 
large amount of design work can be considered redesign, where the 
design specification requires a similar product to those already on 
the market.

Probabilistic Modelling

An early application of probabilistic design modelling was used 
to evaluate a design’s specification [2]. The specifications were 
described using probability density functions (pdf’s). These pdf’s 
were interpreted as acceptability functions, which would gravitate 
towards the preferred specification. By combining the pdf’s of 
several design parameters, it was possible to compute an overall 
acceptability score. This overall acceptability score represented the 
likelihood that a designer could successfully carry through the design 
to completion. Thus, it was feasible to search the specification space 
to fully define a given design subject to a partial specification.

More recently, probabilistic design modelling has been used for 
forecasting  the impact due  to the uncertainty in using immature 
technologies at the conceptual and preliminary design stages 
[3]. By encoding a product’s ‘development curve’ with the help 
of domain experts, it is possible to create a set of functions that 
can be combined to estimate the likelihood of success of a given 
combination of products or technologies. This information can 
then be used to help determine the design concepts that are most 
likely to develop high quality novel products.

Signposting, a method for guiding a designer through the design 
process, uses a probabilistic approach to determine the next design 
task to be undertaken based on the confidence expressed of the 
current design variables [4]. Signposting’s aim is to rapidly obtain a 
high confidence design definition by suggesting to a designer which 
of the available tasks would best improve the overall confidence 
in the design. This provides a framework for collecting domain 
knowledge from a design state viewpoint. Domain experts provide 
an approximate (probabilistic) indication of suitable tasks given 
certain conditions.

These approaches demonstrate that a probabilistic design model 
can be effectively used to search the design space. However, these 
approaches all require extensive domain expert input and hence, it 
would be valuable to be able to induce such models algorithmically.
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Cognitive Aspects and Machine Learning

Human cognitive aspects have had little impact on Machine 
Learning and Data Mining methods.  This is largely due to the fact 
that the results from these methods are most often used  by machines 
rather than humans. However, if Machine Learning approaches are 
to make an impact on how a design space is searched by humans, 
the cognitive issues must be addressed. When performing a 
search, Short Term Memory (STM) is being used to perform rapid 
comparisons and direct further searching. Unfortunately, STM is 
limited in size to about seven items [5]. Larger sets must be grouped, 
or chunked, into sets of related objects which are handled in a 
more abstract manner.

These cognitive constraints inform the search heuristics for any 
design model that is to be used by a human designer. Namely, any 
particular model that is to be used by a designer to understand 
how some design variable relates to the rest of the design should 
not contain more than seven variables. However, when the shape 
of the design space is so complex that more than seven variables 
are required, there is the option of using chunking. Rather than 
use the design variables directly, a latent variable is used. These 
latent variables represent ‘hidden’ or lower level design models. 
Constructing these represents a challenge, as these latent variables 
need to be meaningful for the chunking to be successful.

GRAPHICAL MODELLING

Graphical modelling provides a means for representing the causal 
relationships between design variables [6]. It should be noted that 
design variables include both design parameters, i.e. the aspects of 
the design that are directly determined by the designer, and design 
characteristics,

i.e. the aspects of the design that are the result of the design 
parameters. Graphical modelling differs from parametric 
modelling in a number of ways. First, there are no exact equations 
that bind the design variables. The relationships are represented 
by probability distribution functions, which allow for ambiguity 
and flexibility that is core to the early design stages. Second, as the 
relationships are now probabilistic, it is possible to also include 
relationships that are difficult to model exactly, e.g. aesthetic 
properties. Third, the approach leads to trivially understanding the 
dependency path that design variables have. This path allows for a 
designer to understand which design variables either are affected 
or need to be changed to obtain a desired result, depending on the 
causality direction.

Constructing Graphical Models

There are two primary methods for constructing a graphical 
model: (1) manually identifying the relationships and generating 
an appropriate pdf, and (2) using machine learning techniques for 
inducing a graphical model from prior data. It is also  possible to 
use a hybrid method  that combines both of these approaches. This 
work is primarily concerned with the second approach.

There are two components to inducing graphical models: 
identifying where to place the arcs (or edges) that represent a 
direct relationship between two variables, and how to compute the 
pdf that is to be contained by the arc. The focus here will be on 
identifying where the arcs are needed, as this must be done prior to 
determining the associated pdf’s.

A graph is fully defined by its nodes ( , the set of design variables), 
and the set of edges between them ( , the arcs representing direct 
relationships). The set is determined by the product database 
description. It now remains to discover where the edges should 
lie, i.e. to search the space containing all potential sets. For any 
given edge set , it is possible to compute how likely this would have 
resulted in the product database. This provides for a utility function 
on the edge space, measuring the ‘goodness’ of any given edge set. 
Using  this a number of search algorithms can be applied, e.g. 
Genetic Algorithms or hill climbing. The approach adopted here 
is informed from the Bayesian Network Toolbox (BNT), which is 
publicly available software [7]. Fundamentally, the BNT implements 
a greedy approach. The algorithm starts with an empty edge set, 
and constructs a number of new sets with a single edge. These are 
all evaluated, and the best one is retained as the seed for the next 
iteration. From this seed, a number of edge sets are created that 
differ by a single edge, either by adding or removing an edge from 
the seed set. These are evaluated, retaining the best scoring edge set.

This process is repeated a preset number of iterations. This process 
does guarantee to find the best edge set. However, as the model is 
probabilistic, this is sufficient.

Using a Graphical Design Model

A natural case for using a graphical design model is for performing 
redesign tasks. In this event, a designer starts with a previous 
example that nearly satisfies the new design constraints. The 
designer then identifies a variable that fails a constraint. Recall, this 
could be either a design parameter or characteristic. In the graph, 
the neighbouring nodes (design variables, again either parameter 
or characteristic) need to be considered. As the graph is causally 
directed, the neighbouring nodes are split into the parent and 
child node sets. The child nodes represent the design variables that 
will be affected by the change in the chosen variable. The parent 
nodes represent design variables that will need to be changed to 
achieve the desired original variable setting. Further, if the arcs 
have been populated with conditional probability distribution 
functions, these can be used to provide estimates to what values 
the neighbouring node variables should take. By propagating this 
through the network, it becomes possible to estimate the total 
perturbation to the whole design.

Issues with Graphical Modelling

A common problem with data driven methods is that they tend to 
require large quantities of training data. This typically presents a 
problem in the design domain as data is expensive and hence scarce 
relative to the volume frequently seen in other machine learning 
applications. To overcome this issue, there are a number of options:

1. Do nothing: train the model with sparse data and measure the
statistical significance and proceed with as much caution as
this significance requires.

2. Seed the model with expert knowledge: by providing an initial
model that is believed to be valid to to its origins, the data
volume requirement is reduced.

3. Review the model by domain experts: again, this provides
confidence by verifying the model using domain experts.

From the above options, it would appear that using Machine 
Learning techniques do not offer great advantages over extracting 
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the models directly from domain experts. However, this does not 
take into account the different levels of effort required to extract 
a complete (or near complete) model from a domain expert versus 
either extracting a seed model containing the most important and 
obvious relationships or being provided a model for verification, a 
considerably more passive exercise.

Micro-Models

The concept of micro-models is inspired from the cognitive limits 
imposed by human Short Term Memory (see Section 2.2). Micro-
models are designed to ‘fit’ into STM, allowing a designer to get a 
good understanding of the behaviour of some aspect of the design. 
It is important to note here that these micro-models represent 
only partial models of the design space, and therefore a number of 
micro-models are needed to cover the whole design model.

Definition

Micro-models are defined principally by their size: the model 
should not contain more than seven variables. Where this is not 
possible, meaningful latent variables should be used in place of 
design variables. The latent variables are in their own right micro-
models, and this layering represents the chunking function that can 
be used by STM.

More important than the construction of any single micro-model 
is the construction of the set of micro-models. These must fulfil 
two requirements:

1. The micro-models must cover the full design model; and

2. The micro-models must be meaningful.

The first of these requirements can be algorithmically achieved 
by verifying that the whole design model has been covered. The 
second requirement is more difficult to achieve algorithmically. 
It is possible to flag certain design variables as being particularly 
meaningful or important, and then devise search heuristics that 
search for micro-models that each contain one of these variables. 
Another option is to manually label each micro-model with a 
descriptive name. This is especially useful where micro-models 
are used as latent variables, as this meaningful name provides the 
mechanism for STM to relate to the latent variable in the same 
manner that a designer can relate to a direct design variable.

Micro-model intersection

The method used to bridge the gap between micro-models and a 
complete design model is  by ensuring appropriate overlap between 
micro-models. Thus, the union of the micro-models should be a 
good approximation to the total design model.

The intersection of two models provides a communication channel 
between these models. However, the aim of using micro models is to 
remove the need to consider the whole  de sign model. Therefore, a 
designer should only have to consider two models when absolutely 
necessary. To illustrate how this message passing between models 
should work, the following scenario will be considered. Two micro-
models, and contain a total of five design variables. These two 
intersect at variable , as illustrated in Figure 1.

The following three heuristics can be applied to using micro-
models:

1. Variable    : propagate only in ;

2. Variable   : propagate in , highlight potentially affected;

3. Variable   : propagate in both and .

This allows a designer to proceed with exploring the design space 
with minimal concern to the rest of the model. The designer need 
only propagate information through to another micromodel when 
modifying variables that exist in the intersection of two micro-
models. A warning is provided when there is a potential need to 
propagate information.

Figure 1. Illustration of two overlapping micro-models: design 
variable lies in the intersection and is used to propagate design 

information between the two micro-models.

LEARNING GRAPHICAL MODELS FOR 
STOCHASTIC DESIGN

There are two aspects of learning for graphical models: structure 
learning and distribution learning. This research is primarily 
concerned with the former, and generating the latter ‘on the fly’ 
using the supplied parametric product databases. There are a huge 
number of graphical models for a given set of design variables, and 
the challenge is to develop heuristics to search for ‘good’ models. 
‘Good’ models are determined by their performance against a set 
of metrics, such as validity, understandability, and interestingness [8]. 
Validity measures what proportion of the data can be covered by 
the model. Understandability provides a complexity measure that 
can represent how easy it is for a designer to understand a model. 
Finally, interestingness measures the novelty of representation of a 
model in a design domain. These metrics have been listed in order 
of difficulty of measuring. Validity can be measured directly against 
the database supplied. Understandability requires a measure of 
human ability to understand a given model. Interestingness must 
be measured against the current state of domain knowledge and 
combined with a subjective element supplied by the domain expert.

The model search algorithm this research proposes is an evolutionary 
one.  The results  of one iteration provide the starting point for the 
next iteration and this is repeated until some termination criteria 
have been met. The algorithm requires seeding before the first 
iteration can begin. These initial seed models are created using the 
pairwise information content as determined by the data set and 
Equation 2. These provide a reasonable starting point from which 
to evolve more accurate graphical models.
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Metric implementation

The three named metrics above are conceptual and require 
detailed implementation. The most straightforward of these 
is measuring the model’s validity. This can be done by using 
information content statistics. In effect, ‘interesting’ graphical 
models are those whose arcs contain useful information about 
the causal relation between the nodes. This represents a 
hypothesis about the structure of the relationships between the 
various design variables. The information content measures the 
variance of the conditional probability distribution induced from 
the product data base. The greater the information content, the 
better the model.

Measuring understandability requires a combination of 
measuring the complexity of a model

and how well this model can be mentally absorbed by a designer. 
Using the simple interpretation that the ‘size’ of Short Term 
Memory (STM) is large enough to hold seven objects [5], the 
metric is designed to identify good structures having less that 
seven variables and edges. The most understandable model has 
only two variables and one edge, and thus the metric increases 
the penalty slowly until the total size is greater than seven at 
which point the penalty rapidly increases.

Without a reasonable interpretation for interestingness, this 
metric cannot be implemented at this stage. Future work will 
compare models to the current state of domain knowledge. 
Where the models are good and there is a significant difference 
in the model to the current domain knowledge, this will incur 
a high score.

These metrics are specified for evaluating a single model. The aim 
is to identify a collection of diverse micro-models that together 
provide a good explanation of the design domain. However, the 
above metrics, with small modifications, can also be applied to 
sets of models. The problem is now a matter of identifying a 
good set portfolio of models to provide a covering representation 
of the design domain.

Graph Search Heuristic

The graph search algorithm implements a greedy search heuristic 
based on a measure of the information content of the conditional 
probability distribution. Recall the definition of conditional 
probability:

(1)

Where the events     and        are independent,    Hence, 
when        and             are independent               . By considering the 
difference between the observed conditional and prior probability 
distributions, it is possible to measure the mean variation in this 
difference:

(2)

The variation,         represents how much more information 
is contained in the conditional probability distribution above 
the information contained in the prior probability distribution. 
A large value for indicates that the conditional probability 
distribution contributes greatly to the knowledge of the domain 
while a small value indicates that the two variables are likely to 
be relatively independent of each other.

The graphical model search algorithm begins by measuring the 
pairwise information content between each variable pair. This is 
computed for both directions as in general

. For each design variable, the system is seeded with a micro-
model containing the given variable and the variable that has 
the greatest information content of its conditional probability 
distribution. Where a micro-model would be repeated, the 
variable with the next highest information content is selected.

These micro-models are ordered in increasing information 
content order. The next step is to merge micro-models with 
low information content, creating a new micro-model whose 
information content is given by the sum of its parts. The first 
two ‘smallest’ models with a shared  depth width

depth

width

(material)
he

ig
ht

Figure 2. Design parameters of the flat screen display. 
The design evaluation criteria are: weight, cost,  

expected life, and expected sales volume.

variable are merged, resulting in a new smaller set of micro-
models. Where there are more than two candidate models for 
combining, the tie breaker is determined by (1) resulting model 
complexity followed by (2) lower information score. This is 
repeated until all micro-models are exhausted.

The above greedy algorithm results in a single graphical model. 
This is not as useful as a set of micro-models that describe various 
roughly independent aspects of a design domain. The point at 
which the algorithm should be stopped therefore needs to take 
into account the average complexity and the micro-models’ total 
representation of the design domain.

ILLUSTRATIVE CASE STUDY

For the purposes of illustration, an ‘artificial’ design domain 
has been developed. From this hand-crafted domain model, 
a random sample of designs were created. This data set serves 
two purposes. First, it forms the basis of the illustration of the 
machine learning algorithm. Second, it is used to compare 
the nature of the probabilistic design model with the original 
(source) model. The models that produced by this algorithm 
represent the causal structure between the design variables and 
include the conditional probability density function between 
the two variables. The probabilistic model generated in this 
case study is critically compared to the original model in 
Section 6. Once a model exists, it can then be used as a design 
exploration tool. A proposal for achieving this is introduced in 
Section 7.
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To illustrate the graphical models that are generated, a small design 
case study was created. A flat screen display domain was constructed 
(Figure 2) by defining a small set of relationships between the design 
parameters (aspects of the design determined by the designer) and 
objectives (aspects of the design determined by the parameters). 
These relationships were designed to be sufficiently complex that 
all the design objectives could not only be expressed in terms of 
the design parameters. As the relationships were known before the 
analysis, it was possible to measure how well the analysis method 
performs.

Table 1. Information measures for seed micro-models and causal 
direction.

Micro-model Information

life 0.1322
cost 0.1171
weight 2.2337
life 1.4385

weight units 0.1388
cost units 2.8349
life 0.1066

units 0.1243

Design space definition

The design space of the disply panel was represented by four 
design parameters and four objective criteria, forming an eight-
dimensional space. The design parameters were: width ( ), height 
( ), depth ( ), and material ( ), all of which were randomly sampled 
from a uniform distribution. The objective criteria were: weight, 
cost, life expectancy, and sales volume. These were related as follows:

(3)

(4)

(5)

(6)

where      and      represent noise and are randomly sampled values 
from a normal and uniform distribution, respectively. Note that 
in this model the number of units sold was modelled only by a 
random value. This represents the subjective nature of the customer 
population. A key aim of this case study was to find out an explicit 
relationship for this objective based on the remaining parameters. 
In addition, all objectives had a small amount of gaussian noise 
added. This again was to represent the noise occurring in real 
world domains due to other factors that this simple model did not 
include.

Finally, a database of 200 examples was sampled from this model. 
This represented the ‘past designs’ that would form the basis of the 
analysis. The size of this database was set similar to other product 
databases that would be analysed.

Generating Graphical Models

Using the algorithm described in Section 4.2, a set of seed micro-
models were generated. These models are listed in Table 1. From 
this table it can be seen that the lowest scoring micro-model is 
given in line 7  (    life,    = 0.1066) and  the second lowest is in line 

2 (    cost,    =   0.1171). Both these micro-models share , and hence 
are merged to form the micro-model in Figure 3.

life

y

cost

Figure 3. Micro-model resulting from the first merge  
step in the greedy algorithm, with information content 

0.1066 + 0.1171 = 0.2237.

(a) (b) (c)

Figure 4. Micro-models resulting from five iterations.

Repeating this process for another 4 iterations results in the set of 
micro-models depicted in Figure 4. This model provides a good 
balance between simplicity and completeness of model. The process 
ends with the graphical model shown in Figure 5. This represents 
the ‘total’ graphical model of the domain, as determined by the 
greedy search algorithm. Although it appears to be manageable in 
this design case, this grand-unifying model is not desirable for more 
complex design domains involving significantly larger numbers of 
design variables.

DISCUSSION

There are two aspects that need to be considered with respect 
to the creation and use of design micro-models. Firstly: do the 
micro-models provide a reasonable description of the behaviour 
of the design domain? Secondly: how does the micro-model 
representation compare to other probabilistic design modelling 
approaches?

life rho

cost

units

wt

Figure 5. The final graphical model.

Domain behaviour representation

The ‘true’ behaviour of the display design domain were defined in 
Section 5.1. This definition will be used to compare the results of 
the learning process after five iterations, as displayed in Figure 4.
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Micro-model (a) does not provide a very good explanation of the 
behaviour of the design domain. At best, the relationship between 
Life and is accurate, although the causality arrow should ideally 
be reversed. The other relations bear no similarity to the source 
model.

Micro-model (b) is a closer representation of the source model. 
Although ‘units sold’ was modelled as an unknown externally 
affected design variable, it was related to cost and life. Life is 
explicitly determined by material, , which in turn is strongly related 
to both and weight. So while this model does not provide an explicit 
description of the underlying model, it does provide meaningful 
suggestions as to how the design variable interact.

Micro-model (c) is very simple and relates the design variables ‘units 
sold’ and cost. This relationship does have a very high information 
content (hence why it has not been merged with another micro-
model), and is very close to the version in the source model.

While the micro-models have not provided a close reconstruction 
of the design domain model, certain high information aspects have 
emerged through the data. In the current implementation of this 
algorithm, no data preprocessing was performed. Thus it is entirely 
possible that the nature of the raw data biased the results. Further, 
this design model had some very na ı̈ve assumptions placed upon it, 
namely that the design parameters were to be sampled uniformly. 
In reality this would not be the case, and there would be some tacit 
knowledge embedded within the sample of design parameters.

Comparison to alternative methodologies

The use of probabilistic and stochastic modelling techniques 
in design is not new. Similar to most modelling approaches, the 
bulk of probabilistic methodologies strongly rely on human expert 
input. For probabilistic models there are two aspects involved: (1) 
the ‘structural’ modelling of identifying which variables are related 
and (2) the distribution modelling, explicitly determining the shape 
of the distribution.

Prior domain knowledge about the nature of the variable 
distributions and relationships are used to achieve flexibility in 
the design process [9]. This approach uses a ‘Design Preference 
Index’ to indicate ‘goodness’ of flexible designs. The design 
performance is determined probabilistically, and coupled with the 
designer’s preferences, concepts are selected for further detailing. In 
a similar manner, uncertainty can be probabilistically represented 
in the early stages of variant design and can be used to estimate 
the performance and other objectives of the final design [10]. 
Uncertainty in design has also been used for process modelling [11] 
and for systems integrity [12].

These methods provide excellent examples of the use for 
probabilistic modelling methods, but do not address the challenge 
of creating the model in the first instance. There has been some 
work addressing the representation of product databases suitable 
for learning probabilistic models [13]. The work reported in this 
paper addresses how to use that   to generate both the structural 
representation and the distribution functions, and thus provides 
an important contribution to the probabilistic modelling efforts.

Iteration 1: 

Iteration 2: 

Slacken definition 

Iteration 3: 

Tighten definition 
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Figure 6. Iterative process of slackening and then  
tightening of a design variable to shift its value. For each  

iteration, the thin horizontal line represents the whole possible 
design range. The thicker line represents the range of values 

currently specified.

INTERACTIVE DESIGN SEARCH TOOL
Given a set of micro-models, it is necessary to provide an intuitive 
interface for the designer. This interface provides the means for 
the designer to ‘query’ the design model, and obtain suggestions 
for further specifying the design. It is important that this interface 
provides sufficient transparency to the design micro-models, 
otherwise it runs the risk of being viewed as a black box. Designers 
lack trust in such black boxes, which results in poor uptake of new 
technologies.

As this approach is to be used during the early stages of design, 
its main use will be to complete an initial design specification. 
A designer would supply a partial design specification to start 
the search process. By using the probabilistic design model, 
it is possible to compute the probability density function for 
the remaining unspecified design variables. The nature of the 
graphical model directs the designer to first consider the design 
variables neighbouring those that have already been specified, as 
these will have the most accurate pdf’s. By considering the graphical 
design model, it is clear to the designer which variables should be 
considered in the next iteration. Further, it becomes possible to get 
a preview of the impact of a change to the design.

In addition to tightening the specification, it will also be necessary 
under certain circumstances to be able to slacken a specification. 
This will occur in the event that a design becomes infeasible due to 
conflicting requirements. By considering each design variable’s pdf 
just outside the current specified range, searching for likely areas, 
a set of slackening suggestions can be made. This then allows for a 
design variable’s requirement to be shifted along by tightening the 
specification in the next iteration (see Figure 6).

CONCLUSIONS

This paper has presented a machine learning algorithm for learning 
a Bayesian network from a design database. The algorithm used the 
information content of the conditional probability distribution, 
and implemented a greedy approach to construct the Bayesian 
network. It was argued that this construction should be terminated 
before all the design variables form a single monolithic network, 
but rather form a set of smaller networks. These smaller networks 
are more easily interpreted by human designers who are able to 
extract domain knowledge. Finally, the paper proposed how these 
networks could be used as part of an interactive design search and 
optimisation tool.
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The results generated by the display case study were mixed. It is 
not clear if this is due to the artificial nature of the underlying 
data generating model. This model in effect used a design of 
experiments approach, and therefore the design parameters did not 
contain any implicit knowledge as they would have had the data 
arisen from an industrial case study. In addition, no preprocessing 
had been performed on the data.

Further work is also required in evaluating the work psychology 
aspects of these small stochastic networks, specifically how well 
designers do understand them in practise. There is also a need 
to further explore the interface between the designer and the 
networks when searching for good design concepts. Suitable data 
preprocessing methods must also be considered to ensure the data 
is well conditioned for this type of learning algorithm by removing 
any biases that might exist within the data. Finally, there is a need 
to enable the encoding of prior knowledge into the system where 
it exists.
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