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INTRODUCTION

Optimization has played a significant role in training neural 
networks [23]. This has resulted in a number of effi cient algorithms 
[22, 3, 5, 29, 31] and practical applications in medical diagnosis 
and prognosis [34, 35, 27]. Other applications of neural networks 
abound [12, 30, 18, 13] . In this brief work we focus on a number 
of problems of machine learning and pose them as optimization 
problems. Hopefully this will point to further applications of 
optimization to the burgeoning field of machine learning.

Misclassification Minimization

A fundamental problem of machine learning  is to construct (train) 
a classifier to distinguish between two or more disjoint point sets 
in an ndimensional real space. A key factor in determining the 
classifier is the measure of error used in constructing the classifier. 
We shall propose two error measures one will merely count the 
number of misclassified points, while the other will measure the 
average distance of misclassified points from a separating plane. 
We will show that the first leads to an LPEC (linear program with 
equilibrium constraints) [24, 20] while the second leads to a single 
linear program [21, 4]. However, the problem of minimizing the 
num ber of misclassified points turns out to be NP- complete [11, 
17], but we shall indicate effective approaches [24, 2] that render it 
more tractable. For the sake of simplicity we shall limit ourselves 
to discriminating between two sets, although optimization  models  
apply  readily  to multicategory discrimination [6, 7].  Let A and 
B be two disjoint point sets in  Rn  with  cardinalities m and k 
respectively. Let the m points of A be represented by the m X p 
matrix A, while the k points of B be represented by the k X p matrix 
B. The integer p represents the dimensionality of the real space Rp
into which the points of A and  B are  mapped  by  F     Rn --- Rp,  
before their  separation  is  attempted.  In  the simplest model  p =
n  and F  is  the identity  map. How ever, more complex separation,
say by quadratic surfaces [21], can be effected if one resorts to more
general maps. (Note that complex separation, like fitting with high
degree polynomials, is not always desirable, since it may lead to
merely «memorizing1 the training set.)  The  simplest and one of
the most effective classifiers in Rp is the plane

xw = 0 (1)

where w E Rp is the normal to the plane, j0j/k w k 2 is the distance of 
the plane to the origin in Rp, x E Rp is a point belonging  to F (A) 
or  F (B), and k . k2 denotes the 2-norm. The problem of training 
a linear classifier consists then of determining (w, 0) E Rp+l so as to 
minimize the error criterion chosen. We note immediately that if 
the sets F (A) and F (B) are strictly linearly separable  in  Rp, then  
there exist  (w, 0) E Rp+l  such that 

Aw e0 + e 

Bw ::: e0 – e

where e is a vector of ones of appropriate dimension. Since, in 
general (2) is not satisfiable, we attempt its approximate satisfaction 
by minimizing the chosen error criterion.

Minimization of Number of Misclassifled Points

Let's   R --- f0, 1g determine the step function that maps 
nonpositive numbers into f0g and positive  numbers  into  f1g.   
When  applied  to  a vector z E Rp, s returns a vector of zeros and 
ones in Rp, corresponding  respectively  to nonpositive and positive 
components zi, i = 1, . . . p, of z. The problem of minimizing the 
number of misclassified points then reduces to the following 
unconstrained minimization problem of a discon tinuous function

min    ks(-Aw + e0 + e)k
w, Rn	 (3)

+ks(Bw - e0 + e)k

where  k . k  denotes  some  arbitrary,  but  fixed norm, on Rm or 
Rk. The sets F (A) and F (B) are linearly  separable in  Rp, if and 
only  if the  minimum of (3) is zero, and no points are misclassified, 
otherwise the minimum of  (3) «counts1 the number of misclassified 
points if the 1-norm is used. In [24] it was shown that (3) with the 
1-norm is equivalent to the following LPEC

minimize 
w, ,r,u,s,v

er + es
u + Aw - e0 - e	 0
r	 0
r(u + Aw - e0 - e) =  0
-r + e	 0
u 0
u(-r + e) =    0 (4)
v - Bw + e0 - e    0
s     0
s(v - Bw + e0 - e) =    0
-s + e    0
v       0
v(-s + e) =    0

subject to

It  turns  out  that  problem  (4)  is  extremely  difficult to solve. 
In fact, almost every point (w, 0) E Rp+l is a stationary point, 
since a small perturbation of a plane xw = 0 in Rp that does 
not contain points of either F (A) or F (B) will not change the 
number of misclassified points. In order to circumvent this diffi 
culty, a parametric implicitly exact penalty function was proposed 
for solving (4) in [24] and implemented successfully in [2] by an 
approach that also identifies outlying misclassified points. A fast 
hybrid algorithm for approximately solving the misclassification 
minimization problem is also given in [11].
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Another approach to solving (3) is by utilizing the highly effective 
smoothing technique [9, 10] that has been used to solve many 
mathematical programs and related problems. In this approach, 
the step function s( ) is replaced by the classical sigmoid function 
of neural networks [18]

s( )  (  , a) =          1       
(5)

     1 + e   

where a is a positive real number that approaches +oc for 
more accurate representation of the step function.  With this  
approximation,  the unconstrained discontinuous minimization 
problem is reduced to an unconstrained continuous optimization 
problem, that is however nonconvex. By letting a grow judiciously, 
effective computational schemes for tackling the NP-complete 
problem can be utilized. An important application of the 
misclassification error (3), is its use in construct ing the more 
complex nonlinear neural network classifier of Section 3 below.

Minimization of Average Distance of Misclassiflcations 
from Separating Plane

As early as 1964 [8, 21], the distance of  misclassified points from 
a separating plane was utilized to generate a linear programming 
problem for obtaining a separating plane (1) that approximately 
satisfied (2) by minimizing some measure of distance of misclassified 
points from the plane (1). Unfortunately, all these attempts [22, 
16, 15] contained ad hoc ways for excluding the null solution (w 
= 0) that plagued a linear programming formulation for linearly  
inseparable  sets. How ever, the robust model proposed in [4], which 
consists of minimizing the average of the  1-norm  of the distances 
of misclassified points from the separating plane, completely 
overcame this difficulty. The linear program [4] proposed is this 

minimize              ey +  ez 
w, ,y,z	               m           k

Aw + y e0 + e 
subject to       Bw - z � e0 - e

y, z    0

The key property of (6) is that it gives the null solution w = 0 if and 
only if

 eA =   eB
             m            k

in  which  case  w  =  0  is  guaranteed  to  be not unique. 
Computationally, the LP (6) is very robust, rarely giving rise to the 
null solution, even in  contrived examples where

 eA =   eB
             m            k

In the parlance of machine learning [18], the separating plane (1) 
is referred to as a «perceptron1, «linear threshold  unit1 or simply  
«unit1, with  threshold 0 and incoming arc weight w. This is in 
analogy to a human neuron which fires if the input x E Rp, scalar-
multiplied  by the weight w E Rp, exceeds  the threshold 0.

NEURAL NETWORKS AS POLYHEDRAL 
REGIONS

A neural network can be defined as a generalization of a separating 
plane in Rp, and can be thought of  as  a  nonlinear  map    
Rpf0, 1g.

One  intuitive  way  to generate  such a  map is to divide Rp into 
various polyhedral  regions,  each of which containing elements 
of F (A) or F (B) only.   In  its general form, this problem  is  
again an extremely diffi cult and nonconvex problem. However, 
greedy sequential constructions of the planes determining the 
various polyhedral regions [22, 25, 1] have been quite successful 
in obtaining very effective algorithms for training neural networks 
much faster than the classical online (that is training on one point 
at a time) backpropagation (BP) gradient algorithm [32, 18, 26]. 
Online BP is often erroneously referred to as a descent algorithm, 
which it is not.

In  this  section  of  the  paper  we  relate  the polyhedral regions  
into which Rp is divided,  to a neural network with one hidden 
layer of linear threshold units. It turns out that every such neural 
network can be related to a partitioning of Rp into polyhedral 
regions, but not the conversely. However, any two disjoint point sets 
in Rp can be discriminated between by some polyhedral partition 
that corresponds to a neural network with one hidden layer with a 
suffi cient number of hidden units [19, 25].

We describe now precisely when a specific partition of Rp by h 
separating planes 

 xwi = 0i, i = 1, . . . , h,	 (7) 

corresponds to a neural network with h hidden units. The h 
separating planes (7) divide Rp into at most t polyhedral regions, 
where [14]

t =  
pXhi P (8)

i=O

We shall assume that F (A) and F (B) are contained in the interiors 
of two mutually exclusive subsets of these regions. Each of these 
polyhedral regions can be mapped uniquely into a vertex of the 
unit cube in Rh,

 fzjz E Rh ,  0 � z � eg (9)

by using the map 

s(xwi - 0i ), i = 1, . . ., h (10)

where s is the step function defined earlier, and x is a point in Rp 
belonging to some polyhedral region. If the r polyhedral regions of 
Rp constructed by  the h  planes (7) are such that  vertices of the 
cube (9) corresponding to points in A, are linearly separable in Rh 

from the vertices of (9) corresponding to points in B by a plane

  zv = T,	 (11)

then the  polyhedral  partition  of  Rp corresponds to a neural 
network with h hidden linear  threshold units (with thresholds 
0i ,  incoming  arc weights wi, i = 1, . . . , h) and output linear 
threshold unit (with threshold T and incoming arc weights vi, i 
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= 1, . . . , h [23]) . This condition is  necessary and suffi cient for 
the polyhedral partition of Rp in order for  it  to  correspond  to  a  
neural network with one layer of hidden units. For more detail and 
graphical depiction of the neural network, see [23]. «Training1 a 
neural network consists  of  determining  (wi, 0i)  E  Rp+l,  i  = 1, . 
. . , h, (v, T ) E Rh+l, such that the following nonlinear inequalities 
are satisfied as best as possible 

h X
s(Awi  - e0i ) vi    eT + e

i=l 
h	 (12)

X
s(Bwi - e0i ) vi � eT - e

i=l

This can be achieved by minimizing the number of misclassified 
points in Rh by solving the following unconstrained minimization 
problem

   min           ks (– 
hX 

s(Awi  - e0i )vi – eT + e) k
wi , i ,v,             i=l

+ ks (–
hX 

s(Bwi  - e0i )vi – eT + e) k
i=l

(13)

where the norm is some arbitrary norm. If the square of the 2-norm 
is used in (13) instead of the 1-norm, and if the step function s 
is replaced by the sigmoid function in (13), we obtain an error 
function similar to the error function that BP attempts to find a 
stationary point for, and for which a convergence proof is given 
in [26], and stability analysis in [33]. We note that the classical 
exclusive-or (XOR) example [28] for which F  is  the identity map 
and 

A =
1	 0,  

0	 1

B  =
	0	 0

 , gives a  zero  minimum  for  (13) with the 
1	 1

following solution 

(wl, 0l) = ((2   - 2),  1),  (w2, 02) = ((-2  2),  1)

(v, T ) = ((2 2), 1)

(14)

It is interesting to note that the same solution for the XOR example 
is given by the greedy multisurface  method tree (MSMT) [1].  MSMT 
ensuing halfspaces, until adequate separation is obtained. For this 
example, the first plane obtained  [4]  is  (wl, 0l)  =  ((2      - 2),   
1),  which separates f(1, 0)g from f(0, 0), (0, 1), (1, 1)g. The second 
plane obtained is (w2, 02) = ((-2  2),  1), separates f(0, 1)g from f(0, 0),  

(1, 1)g, and the separation is complete between A and B. These 
planes correspond to a neural network that gives a zero minimum 
to (13), which of course is not always the case.  However, MSMT 
frequently gives better solutions than those generated by BP and is 
much faster than BP.

CONCLUSION

Various problems associated with neural network training have 
been cast as mathematical programs. Effective methods for solving 
these problems have been brie y described. For more details, the 
reader is referred to [3, 4, 23].
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