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INTRODUCTION

Congruence is one of the concepts that form the core of 
number theory. There are several observations that surround 
the concept of congruence. One of them is that when two 
odd numbers are multiplied the result is always an always an 
odd number. For instance 47 × 83 = 3901 and 2395 × 9751 
= 23353645. Also, the product of any two even numbers is 
always an even number. For instance 6 × 10 = 60 and 44 × 92 
= 4048. Additionally, the result of multiplying an odd number 
with an even one is always  even. For example 31 ×   4 = 124. 
When two odd numbers are added together, the result is an 
even number. For instance 11 + 33 = 44. This is similar to 
adding an even number to another even number, as the result 
is an even number. For instance 560 + 40 = 600. An addition 
of an odd number and an even one gives an odd number as 
the result. For instance 23 + 30 = 43. This information can be 
summarized below thus:
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These observations are so primary that it is easy to wonder 
what beneficial conclusions can be drawn from them. In 
fact, these observation form the core in number theory. A lot 
of problems that are presented in number theory take the 
form thus: if the function f is a polynomial that has a number 
of variables that have integer coefficients, if we equate the 
function to 0, will it have integer solutions? These questions 
were asked by Diophantus, a Greek mathematician and were 
subsequently named Diophantine problems in his honor. An 
example of using Diophantine equations in congruence is 
shown at the end of the discussion.

Focusing question

Congruent relations exhibit unique characteristics which 
enable them to be applied in advanced areas such as 
cryptography. To what extend to those relations exhibit similar 
characteristics as those of ordinary relations. Can operations 
such as addition and multiplications be applied to them?

Basic Properties

There is a branch of number theory known as the theory 
of congruences which was introduced by Gauss which is 
imperative in solving many issues that surround divisibility 
of integers.

Definition 1: Given integers q , p and m, and m > 0, it is said 
that q is congruent to p modulo m, written as p ≡ q (mod m). 
If the number obtained by dividing the difference between p 
and q (p - q), is divided by m, m is termed as the modulus of 
that congruence. In mathematical representation or notation 
the congruence is equivalent to the following divisibility 
relation: m | (p - q). Particularly, p ≡ 0 (mod m) only when m 
| p. Therefore, p ≡ q (mod m) only when p - q ≡ 0 (mod m). In 
instances where m ∤ (p - q) the notation p ≠ q is used, and it is 
said that p and q are incongruent mod m.

To clearly exemplify this, here are few examples: 19 ≡ 7 (mod 
12), 32 ≡ -1 (mod 5). Also if k is odd of only if n ≡ 1 (mod 2) and k 
is even only if n ≡ 0 (mod 2). If p ≡ q (mod d) then p ≡ q (mod m) 
whenever m | d , m > 0.

The ≡ symbol is known as the congruence symbol and 
was chosen by Gauss in an attempt to suggest   an analogy 
with the equals (=) symbol. Congruent relations possess 
many properties that are ordinarily associated with formal 
equations.

Proofs

Theorem 1: A congruent relation is an equivalence one. This is 
because it possesses properties such as reflexivity such that 
p ≡ q (mod m) and symmetry p ≡ q (mod m) implying q ≡ p 
(mod m). Additionally, the transitivity property is exhibited by 
congruent relations such that p ≡ q (mod m) and q ≡ r (mod 
m) imply that p ≡ r (mod m).

Proof: For the proof of these properties, they can be 
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directly derived from divisibility properties. For reflexivity, 
m | n while for symmetry when m | (p - q)then m | (q - p). 
For transitivity, when m | (p - q) and m | (q - r)then m | (p - 
q) + (q - r) = p - r.

Theorem 2: if p ≡ q (mod m)and α ≡ β (mod m) then it follows 
that

i. pα ≡ qβ ≡ (mod m)

ii. px + αy ≡ qx + βy (mod m) for all integers x as well as y

iii. pn ≡ qn (mod m) for all positive integers n

iv. f(p) = f(q) (mod m) for all polynomials f, that have 
integer coefficients

Proof:

i. Since m | (p - q) and that m | (α - β) then it follows that 
m | x (p - q)+ y (α - β) = (px + αy) - (qx + βy)

ii. This proof can be derived from the proof above in part 
(i) by observing that pα - qβ = α (p - q) + b (α - β) ≡ 0 
(mod m)

iii. Taking α = p and β = q from part (ii) above, and 
applying induction on n

iv. Using part (iii) above and the degree of f  to do 
induction

There are several lessons that can be drawn from theorem 2 
above. One is that two congruences that have the same modulus 
can be multiplied, added, or even subtracted as if they were 
ordinary equations. This is also true for any given number of 
congruences that have the same modulus.

Having proven a number of properties around congruences, it 
is imperative to examine an example and show the usefulness 
of congruences. An example is testing for divisibility by, say 
9. A given integer k < 0 is divisible by 9 only when the sum of 
the decimals obtained by expanding it is divisible by 9. Using 
congruences, it is easy to prove this property. Assuming that 
the digits of k are c0, c1, c2 ,…cn, then k = c0 + 10c1 + 102c2 + ⋯ 
+ 10ncn. By applying theorem 2 above, and using modulo 9, 
10 ≡ 1, 102   ≡ 1, 10n ≡ 1 (mod 9). Therefore, k ≡ c0 + c1 + c2 

+ … + cn. It is all-important to note that all the congruences 
additionally hold modulo 3 too, hence a number is always 
divisible by 3 only in instances when the summation of its 
digits also divisible by 3.

Theorem 3: If d > 0 then, p ≡ q (mod m) only when pd ≡ qd (mod md).

Proof: Since we have m | (q-p) only when dm | d (q - p).

Theorem 4: This theorem is used to describe the cancellation 
law which is applied in cases where the modulus is indivisible 
by the common factor. It states thus: when pk ≡ qk (mod m) 
and d = (m, k) then p ≡ q (mod m/k). This can be explained in 
simpler terms thus a common factor k is cancellable given that 
the modulus is divided by d = (m, k). Particularly, a factor that 
is common between the two that is relatively prime for the 
modulus is possible to be always cancelled.

Proof: Because pc ≡ qc (mod m) then we have (m ┤| c (p - 
q) then m/k | c/k (p - q). But then (m/k, c/k) = 1 therefore 
m/k | (p - q).

Theorem 5: Assuming p ≡ q (mod m), when d/m and d/p then 
d/q.

Proof: It suffices to make the assumption that d > 0. If d | 
m then it follows that p ≡ q (mod m) has the implication 
p ≡ q (mod d). However, if d | p then p ≡ 0 (mod m) which 
implies p ≡ q (mod d). But when d | p then it means p ≡ 0 
(mod d) so q ≡ 0 (mod d).

APPLICATIONS

1. Find the solution for 6y = 7 (mod 8)

Because (6, 2) = 2 ∤7 then there exist no solutions.

2. Find the solution for 3y = 7 (mod 4)

Because (3, 4) = 1 | 7 there exist one solution for mod 
4. There are a number of ways of finding the solution. 
One of the ways is the application of linear Diophantine 
equations. 3y = 7 (mod 4) implies that 3y + 4x = 7 for 
some x. Inspecting closely, y0 = 1 and x0 = 1 is one of the 
solutions. The GCD of 3 and 4, denoted (3,4) is 1, hence the 
general solution is y = 1 + 4k, x = 1 - 3k. The x equation is 
irrelevant. The y equation is useful and says y = 1 (mod 4).

The above example shows that there is a wide application of 
the concept of congruence in other areas such as determining 
existence of solutions in such problems.

CONCLUSION

The concept of congruence and the proofs around the operations 
of congruent relationships is imperative in the number theory. 
The operations of congruent relations are proven to be in line 
with those of ordinary equations or properties, especially 
multiplication, subtraction as well as divisibility, which makes 
their operations applicable in many situations.


