
1

INTRODUCTION

What is cryptography?

Cryptography dates back to the ancient times when simple
methods were used to encrypt messages. Scytale and
Polybius were simple devices used to encrypt messages for
military services to deliver secret messages between troops.
The most known encryption method is the Caesar cipher by
Julius Caesar in 100 BC, which uses a substitution cipher.
In a substitution cipher, each letter is shifted to substitute
another letter. For instance, shifted by 5 places implies that ‘A’
is replaced with ‘F’. However, due to the frequency of letters
used in the language, this method was easily broken.

Later in the 19th century, electric encryption key was
introduced by Hebern which was called the Hebern rotor
machine. Using a single rotor, the key was in the rotating disk
and the key encoded a substitution table. Therefore, pressing
the keyboard resulted the output of the cipher text. However,
as the Caesar cipher, the first electronic contraption was
broken by letter frequencies. As a result, in order to spread out
the letter frequency, the Germans used the Enigma machine
through the end of World War I and heavily during World War
II. There were 3 to 4 motors for each machine and the rate the
motor rotates resulted the cipher text. Therefore, the initial
setting of the keyboard was required to decode the encrypted
message.

However, Enigma machine was decrypted by Poland’s cipher
bureau. Throughout history, encryption was developed mainly

to secure military information and deliver war tactics. Broken
encryption methods resulted in failure of certain battles.

Therefore, it was important to not only secure their messages
but also to decrypt the enemies messages. The field of
cryptography was enlarged by the two world wars and major
breakthroughs were made during this time.

Why is Cryptography Important?

In the later 1900s, the use of cryptography became
widespread with commercial usage. Businesses were trying
to secure their information from competitors and customers
were demanding some kind of encryption methods. One of the
innovative company, IBM formed a crypto group and designed
a cipher, Lucifer. Now IBM possessed a good crypto support.
Later, known for a block cipher, Lucifer was adopted as the
DES(Data Encryption Standard). However, the computing
power increased geometrically that eventually broke the
key through brute force attack. The brute force attack led to
increase the complexity of the secret key to slow the time it
takes to obtain a possible plain message.

Most of the cryptography remains partly hidden. Since the
value of encryption method is determined through how
secure the key remains, major discoveries are not exposed
publicly. As a result, the discoveries of new methods were not
revealed to public and were primarily operated in encryption
related institutions.

Digital signatures can be seen as handwritten signatures in
electronic format. It refers to any electronic data that carries

Dissecting Schnorr’s Digital Signature Scheme
Scott Baker

ABSTRACT

I was always curious about how personal information was stored and delivered through the Internet. In the
real world we sign a receipt to verify that we are the people using our credit cards, but in the digital world,
how can our signature become valid? I searched for the information and discovered that digital signatures
exist via the Internet, and data encryption standard, known as the DES, is the standard the United States
employ. The DES is the combination of El Gamal and Schnorr’s digital signature. Through this research
paper I explored the Schnorr’s digital signature mainly, by using the MATHLAB and the math model tools.
The bases of the key generated by the digital signature have its principal in number theory, so I also learned
about the modular rules.

2

the purpose of a signature, but not all electronic signatures
use digital signatures. It demonstrates the authenticity of the
message or document. A valid digital signature will provide
the recipient with the certainty that the message was sent by
the person he or she wanted. It is commonly used in software
distribution, financial transactions, and places to detect
forgery or tampering.

EL GAMAL DIGITAL SIGNATURE

Above diverse digital signature mechanisms, Schnorr’s
Signature is one of the modern digital signatures using
asymmetric cryptography. It also provides a non- repudiation,
which means that the signer cannot successfully claim that
they did not signed a signature. Non-repudiation schemes
have time stamps. Therefore, even when the private key is
exposed, the time stamp makes the digital signature valid. Also,
Schnorr’s signature is based on discrete logarithm problems
which base comes from the El Gamal Digital Signature.

El Gamal digital signature scheme is one of the famous
digital signatures based on difficulty of computing discrete
logarithms. Taher ElGamal described it. It employs
asymmetric key encryption and its algorithms are used in the
free GNU Privacy Guard software. Its security depends upon
the difficulty of a certain problem.

In order to generate a key pair (public key - a secret key), a
first chosen large prime integer P and large integer G, where
G <R. The sender of the signed document (Alice) and receiver
(Bob) use in the calculations similar large integers P (~ 10308
or ~ 21024) and G (~ 10154 or ~ 2512), which are not secret.

The algorithm is as follows:

1.	 Alice chooses random integer X, 1< Х ≤ (Р-1), and compute

Y =GX mod Р.

The number Y is the public key used to verify the signature of
the sender. The number of Y is open to all potential recipients
of transferred documents. The number X is the sender’s
private key for signing documents and should be kept secret.

2.	 Alice hashes a message M using the hash function h:

m=h(M), 1<m<(Р-1),

and generates random integer K, 1<K<(P-1) such that K
and (P-1) are coprime.

3.	 Alice computes an integer a by the formula

а = GK mod Р.

4.	 Alice computes integer b, solving the equation (see

e.g.[9]):

m=X*a+K*b (mod (P-1))

with help of extended Euclid’s algorithm.

The pair of numbers (a,b) form digital signature S

S=(a,b)

affixed to the document M.

A triple (M, a, b) is sent to the recipient, while the pair (X,

K) is kept secret.

5.	 After receiving the signed message (M, a, b) Bob should

verify is the signature

S = (a, b) corresponding to the message M.

He first calculates the hash-value of the received message

M:

m = h (M).

6.	 Then he calculates the value

А = Ya ab (mod Р)

and recognizes the message authentic if and only if

А = Gm (mod Р).

In other words, a receiver checks the equity of ratio

Ya ab (mod Р)= Gm (mod Р).

The last equation is satisfied if the signature S = (a, b)

We can demonstrate that the last equation is satisfied if and

only the signature is S= (a,b) under the document M that

is obtained through using a secret key of X, from which the

public key Y was obtained. Therefore, without disclosing the

key itself, one can make sure the sender of the message M was

the holder of the private key, which is X, and the sender signed

the document M.

However, the problem of ElGamal digital signature scheme is

in the large size of P.

3

SCHNORR’S DIGITAL SIGNATURE

To decrease the size of the signature Schnorr created new
scheme, based on ElGamal. It includes 3 big steps

i.	 Generating of keys.

ii.	 Generating of signature.

iii.	 Verification of signature.

Generating of Keys

Let’s consider the 1st step:

Generating of keys for Schnorr signature is performed similar
to DSA [3]:

1.	 Alice selects prime number p, which length (as usual) is
equal to 1024 bits.

2.	 Alice selects another prime number q such that p-1=0
(mod q). It is accepted to choose the size of q equals to
160 bits.

3.	 Alice selects e1≠1, such that e q
1=1 (mod p) . It can be

realized by organizing simple iteration procedure.

4.	 Alice selects integer number d<q, as her secret key.

5.	 Alice calculates e2 -e q
1

-d mod P .

So, public Alice’s key is (e1,e2,p,q) and her secret key is d.

Example 1.

Suppose p=88667. Let’s factor p-1 with help of MatLab [5] :

>> factor(88666)

ans =	 2	 43	 1031

So, we can select q=1031.

To do the next step we should use special function, which has
been generated in previous paper (see [3]):

function R = modulopower (X, N, M)

X = rem(X, M);

R = 1;

while N > 0

if rem(N, 2) == 0

X = rem(X * X, M);

N = N / 2;

else

R = rem(R * X, M);

N = N - 1;

end

end

end

Remark, that there are several elements that are satisfy
equation e q

1=1 (mod p).

They can be found by the cycle:

>>p=88677; q=1031;i=i0;

>> while modulopower(i,q,p)~=1

i=i+1

end

E.g. if i0=70300 then e1=70322.

Let’s check it

>> modulopower(70322,1031,88667)

ans =	 1

I.e. e 1
1031=1 (mod 88667).

Let’s Alice select d=755, so e 2 – 703221031-755 mod 88667
=13136:

>> modulopower(70322,1031-755,88667)

ans =	 13136

Thus, Alice’s set of keys consists of (70322,13136,88667,1031).

Exercise 1.

Suppose p=48731, q=443. It is required:

1.	 check the condition P-1=0 (mod q);

2.	 find arbitrary e1 near 10000 with help of MATLAB,
organizing iteration procedure;

3.	 select d<443 and e2 with help of MATLAB.

Solution

1.	 Let’s factor number p using embedded MatLab function
factor:

>> factor(48730)

ans =	 2	 5	 11 443

2.	 Acting as in Example 1, we get

p=48731;q=443;i=10000; while modulopower(i,q,p)~=1

i=i+1

end

…

4

i =	 10228

So, e1=10228.

3.	 Selecting d=357 we can calculate 𝑒2 = 𝑒1
𝑞−𝑑𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

with help of MatLab

>> e1=10228;e2=modulopower(e1,q-d,p) e2 =	42300

Thus, Alice’s set of public keys consists of (10228,42300,48731,443).

Generating the Signature

Let’s consider the 2nd step

1.	 Alice select arbitrary number rϵ(1,q). It should be
performed every time when she is going to transfer a new
message.

2.	 Alice calculates and generates first signature S1 with
help of hash function_:

S1=h(M|g1) where M is message; a|b denotes concatenation
of expressions.

3.	 Alice calculates second signature S2=(r+d*S1)mod q.

4.	 Alice transfers M, S1 and S2.

Example 2

Calculate S1 and S2 for the test message M=1000 using Alice’s
keys, generating in Example 1.

Solution.

1.	 Let’s use MATLAB embedded function randi to find r

>> q=1031;r=randi(q,1,1) ans = 987

2.	 Then we find g1

>> r=987;e1=70322;p=88667;g1= modulopower(e1,r,p)

g1 =	 85882

3.	 To define concatenation of numbers we write simple
function for calculating the number of digits of g1:

function f=numdigits(x)

n=x; k=1;

if n<10;

s=0;

else

s=mod(n,10);

while n>10;

h=mod(n,10);

1

g=h/10;

n=(n/10)-g;

k=k+1;

end

end

k

end

Applying this function gives

>> numdigits(g1)

k =	 5

So, concatenation will be done as

>> M=1000;M1=M*10^k+g1

M1 = 100085882

4.	 To end this block we use hash function H(x)= x2 mod Z,
where Z<p is integer which has the same digits as p:

>> M1=100085882; Z=76543;S1=mod(M1^2,Z)

S1 =	37718

5.	 Calculating S2

>> q=1031;d=755;r=987;S2=mod(r+d*S1,q)

S2 = 826

Thus, expression to transfer are M=1000; S1=37718; S2=826.

Exercise 2.

Calculate S1 and S2 for the test message M=2000 using Alice’s
keys, generating in Exercise 1 with the same hash-function as
in Example 2.

Solution

1.	 Let’s use MATLAB embedded function randi to find r

>> q1=443;r1=randi(q1,1,1)

r1=63

2.	 Then we find g1

>> e1=10228;p1=48731;g1= modulopower(e1,r1,p1)

g1 =	15963

3.	 To define concatenation of numbers we write simple
function for calculating the number of digits of g1:

>> g1=15963; numdigits(g1)

k=5

So, concatenations will be done as

>> M=2000;M1=M*10^k+g1

5

M1= 200015963

4.	 To end this block we use hash function H(x)= x2 mod Z as
in Example 2

>> M1=200015963; Z=43210;S1=mod(M1^2,Z)

S1 =	12668

5.	 Calculating S2

>> q=443;d=357;r=63;S2=mod(r+d*S1,q)

S2 = 395

Thus, expression to transfer are M=2000; S1=12668; S2=404.

Verification of the Signature

Let’s consider the last step.

After receiving pocket (M,S1,S2) from Alice, Bob do the next 1)	

1.	 Calculates V=h(M| 𝑒1
𝑆2 𝑒2

𝑆1 𝑚od 𝑝).

2.	 Checks the validity of S2 mod p = V mod p. If true then a
message is adopted if false then a message is rejected.

Example 3.

Let’s check the Alice’s authenticity of the signature, generating
in Example 2.

1.	 To calculate we will use the rule a·b mod p = ((a mod p)·(b
mod p))mod p [9]. I.e. .

Applying function modulopower, for known values of
e1,e2,S1,S2,p we get

>> e1=70322;e2=13136;S1=37718;S2=826;p=88667;

G=mod(modulopower(e1,S2,p)* modulopower(e2,S1,p),p)

G =	 85882

2.	 To calculate h(M|G) we act analogously to the Example 2

>> numdigits(G); M1=M*10^k+G

k =	 5

M1 = 100085882

>> Z=76543;V=mod(M1^2,Z)

V =	 37718

Since V=S1 mod p, so the message is adopted.

Exercise 3.

Check the Alice’s authenticity of the signature, generating in
Exercise 2.

Solution

1.	 Applying function modulopower, for known values of
e1,e2,S1,S2,p we get

>> e1=10228;p=48731;e2=42300;S1=12668;S2=395;

G=mod(modulopower(e1,S2,p)* modulopower(e2,S1,p),p)

G =	 15963

2.	 To calculate h(M|G) we act analogously to the Example 2

>> numdigits(G); M1=M*10^k+G

k =	 5

M1 = 200015963

>> Z=43210; V=mod(M1^2,Z)

V =	 12668

Since V=S1 mod p, so the message is adopted.

SCHNORR AUTHENTICATION PROTOCOL

The algorithm of the protocol is as follows:

1.	 Pretreatment.

Alice chooses a random number r, (r< q) and calculates
. These computations are preliminary and may be made
long before Bob advents.

2.	 Initiation. Alice sends x to Bob.

3.	 Bob chooses a random number R between 0 and 2t-1 and
sends it to Alice.

4.	 Alice computes S= r + dR (mod q) and sends S to Bob.

5.	 Confirmation. Bob computes (mod p) and identifies Alice
if z=x.

The security of this algorithm depends on the parameter t.
The autopsy of the algorithm is approximately equal to 2t. This
algorithm can be also realized in MatLab without any difficulties.

CONCLUSION

The research paper about Schnorr’s Digital Signature gave
me an idea of how my personal information was secured
throughout the internet. Generating the key and authentication
process was simple in form but complicated in decoding. Also,
this process of exploration taught me how to use MATLAB
and format a research paper. Exploring the way that digital
signatures developed from the El Gamal digital signature to
the Schnorr’s signature and how the United States adopted
their DES to combine the two ways was intriguing in how the
development took place.

6

Throughout the history of cryptography, it always has been
a matter of how the information can be secured secretly to
prevent the hackers from hacking into the information and
causing disruption. Authentication is an important matter
since it proves the accuracy of the information. The fast
developing hacking industry has induced developers to
come up with a more secure and complicated method. Since
nowadays, brute force attack can decrypt any message that is
encrypted and it is the matter of time that causes problem,
the key has to be longer and harder to find out. Especially, the
quantum computers directly employ the quantum mechanical
phenomena to perform the operation of data. They differ from
digital computers and foster the speed of decryption. Coming
up with the way to prevent the brute force attack can be a
future object for people in the field but also decoding the key
will always be parallel to the development.

Therefore, I would like to further explore how to generate
and decode the key in a more efficient way. How to factorize
the prime number has always been enigma to the developers
in the field, so I want to explore how they came up with the
thought and how efficient factorizing can take place using
certain methods.

REFERENCES

1.	 A. Menezes, P.van Oorschot, S. Vanstone. Handbook of Applied
Cryptography. — CR C Press, 1996.

2.	 Douglas R. Stinson Cryptography: Theory and Practice, Third
Edition. - CRC Press, 2005.

3.	 B. Schneier, Applied Cryptography. - John Wiley & Sons 1996.

4.	 Digital signature URL: http://en.wikipedia.org/wiki/Digital_
signature

5.	 ElGamal signature scheme https://en.wikipedia.org/wiki/
ElGamal_signature_scheme

6.	 Schnorr signature URL: https://en.wikipedia.org/wiki/
Schnorr_signature.

7.	 MATLAB URL: http://en.wikipedia.org/wiki/MATLAB

