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INTRODUCTION

What is cryptography?

Cryptography dates back to the ancient times when simple 
methods were used to encrypt messages. Scytale and 
Polybius were simple devices used to encrypt messages for 
military services to deliver secret messages between troops. 
The most known encryption method is the Caesar cipher by 
Julius Caesar in 100 BC, which uses a substitution cipher. 
In a substitution cipher, each letter is shifted to substitute 
another letter. For instance, shifted by 5 places implies that ‘A’ 
is replaced with ‘F’. However, due to the frequency of letters 
used in the language, this method was easily broken.

Later in the 19th century, electric encryption key was 
introduced by Hebern which was called the Hebern rotor 
machine. Using a single rotor, the key was in the rotating disk 
and the key encoded a substitution table. Therefore, pressing 
the keyboard resulted the output of the cipher text. However, 
as the Caesar cipher, the first electronic contraption was 
broken by letter frequencies. As a result, in order to spread out 
the letter frequency, the Germans used the Enigma machine 
through the end of World War I and heavily during World War 
II. There were 3 to 4 motors for each machine and the rate the 
motor rotates resulted the cipher text. Therefore, the initial 
setting of the keyboard was required to decode the encrypted 
message.

However, Enigma machine was decrypted by Poland’s cipher 
bureau. Throughout history, encryption was developed mainly 

to secure military information and deliver war tactics. Broken 
encryption methods resulted in failure of certain battles.

Therefore, it was important to not only secure their messages 
but also to decrypt the enemies messages. The field of 
cryptography was enlarged by the two world wars and major 
breakthroughs were made during this time.

Why is Cryptography Important?

In the later 1900s, the use of cryptography became 
widespread with commercial usage. Businesses were trying 
to secure their information from competitors and customers 
were demanding some kind of encryption methods. One of the 
innovative company, IBM formed a crypto group and designed 
a cipher, Lucifer. Now IBM possessed a good crypto support. 
Later, known for a block cipher, Lucifer was adopted as the 
DES(Data Encryption Standard). However, the computing 
power increased geometrically that eventually broke the 
key through brute force attack. The brute force attack led to 
increase the complexity of the secret key to slow the time it 
takes to obtain a possible plain message.

Most of the cryptography remains partly hidden. Since the 
value of encryption method is determined through how 
secure the key remains, major discoveries are not exposed 
publicly. As a result, the discoveries of new methods were not 
revealed to public and were primarily operated in encryption 
related institutions.

Digital signatures can be seen as handwritten signatures in 
electronic format. It refers to any electronic data that carries 
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the purpose of a signature, but not all electronic signatures 
use digital signatures. It demonstrates the authenticity of the 
message or document. A valid digital signature will provide 
the recipient with the certainty that the message was sent by 
the person he or she wanted. It is commonly used in software 
distribution, financial transactions, and places to detect 
forgery or tampering.

EL GAMAL DIGITAL SIGNATURE

Above diverse digital signature mechanisms, Schnorr’s 
Signature is one of the modern digital signatures using 
asymmetric cryptography. It also provides a non- repudiation, 
which means that the signer cannot successfully claim that 
they did not signed a signature. Non-repudiation schemes 
have time stamps. Therefore, even when the private key is 
exposed, the time stamp makes the digital signature valid. Also, 
Schnorr’s signature is based on discrete logarithm problems 
which base comes from the El Gamal Digital Signature.

El Gamal digital signature scheme is one of the famous 
digital signatures based on difficulty of computing discrete 
logarithms. Taher ElGamal described it. It employs 
asymmetric key encryption and its algorithms are used in the 
free GNU Privacy Guard software. Its security depends upon 
the difficulty of a certain problem.

In order to generate a key pair (public key - a secret key), a 
first chosen large prime integer P and large integer G, where 
G <R. The sender of the signed document (Alice) and receiver 
(Bob) use in the calculations similar large integers P (~ 10308 
or ~ 21024) and G (~ 10154 or ~ 2512), which are not secret.

The algorithm is as follows:

1.	 Alice chooses random integer X, 1< Х ≤ (Р-1), and compute

Y =GX  mod Р.

The number Y is the public key used to verify the signature of 
the sender. The number of Y is open to all potential recipients 
of transferred documents. The number X is the sender’s 
private key for signing documents and should be kept secret.

2.	 Alice hashes a message M using the hash function h:

m=h(M), 1<m<(Р-1),

and generates random integer K, 1<K<(P-1) such that K 
and (P-1) are coprime.

3.	 Alice computes an integer a by the formula

а = GK mod Р.

4.	 Alice computes integer b, solving the equation (see 

e.g.[9]):

m=X*a+K*b (mod (P-1))

with help of extended Euclid’s algorithm.

The pair of numbers (a,b) form digital signature S

S=(a,b)

affixed to the document M.

A triple (M, a, b) is sent to the recipient, while the pair (X, 

K) is kept secret.

5.	 After receiving the signed message (M, a, b) Bob should 

verify is the signature

S = (a, b) corresponding to the message M.

He first calculates the hash-value of the received message 

M:

m = h (M).

6.	 Then he calculates the value

А = Ya  ab  (mod Р)

and recognizes the message authentic if and only if

А = Gm  (mod Р).

In other words, a receiver checks the equity of ratio

Ya  ab  (mod Р)= Gm  (mod Р).

The last equation is satisfied if the signature S = (a, b)

We can demonstrate that the last equation is satisfied if and 

only the signature is S= (a,b) under the document M that 

is obtained through using a secret key of X, from which the 

public key Y was obtained. Therefore, without disclosing the 

key itself, one can make sure the sender of the message M was 

the holder of the private key, which is X, and the sender signed 

the document M.

However, the problem of ElGamal digital signature scheme is 

in the large size of P.
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SCHNORR’S DIGITAL SIGNATURE

To decrease the size of the signature Schnorr created new 
scheme, based on ElGamal. It includes 3 big steps

i.	 Generating of keys.

ii.	 Generating of signature.

iii.	 Verification of signature.

Generating of Keys

Let’s consider the 1st step:

Generating of keys for Schnorr signature is performed similar 
to DSA [3]:

1.	 Alice selects prime number p, which length (as usual) is 
equal to 1024 bits.

2.	 Alice selects another prime number q such that p-1=0 
(mod q). It is accepted to choose the size of q equals to 
160 bits.

3.	 Alice selects e1≠1, such that e q
1=1 (mod p) . It can be 

realized by organizing simple iteration procedure.

4.	 Alice selects integer number d<q, as her secret key.

5.	 Alice calculates e2 -e q
1

-d mod P .

So, public Alice’s key is (e1,e2,p,q) and her secret key is d.

Example 1.

Suppose p=88667. Let’s factor p-1 with help of MatLab [5] :

>> factor(88666)

ans =	 2	 43	 1031

So, we can select q=1031.

To do the next step we should use special function, which has 
been generated in previous paper (see [3]):

function R = modulopower (X, N, M) 

X = rem(X, M);

R = 1;

while N > 0

if rem(N, 2) == 0

X = rem(X * X, M);

N = N / 2;

else

R = rem(R * X, M);

N = N - 1;

end 

end 

end

Remark, that there are several elements that are satisfy 
equation e q

1=1 (mod p).

They can be found by the cycle:

>>p=88677; q=1031;i=i0;

>> while modulopower(i,q,p)~=1 

i=i+1

end

E.g. if i0=70300 then e1=70322.

Let’s check it

>> modulopower(70322,1031,88667) 

ans =	 1

I.e. e 1
1031=1 (mod 88667). 

Let’s Alice select d=755, so e 2 – 703221031-755 mod 88667 
=13136:

>> modulopower(70322,1031-755,88667) 

ans =	 13136

Thus,  Alice’s set of keys consists of (70322,13136,88667,1031).

Exercise 1.

Suppose p=48731, q=443. It is required:

1.	 check the condition P-1=0 (mod q);

2.	 find arbitrary e1  near 10000 with help of MATLAB, 
organizing iteration procedure;

3.	 select d<443 and e2     with help of MATLAB.

Solution

1.	 Let’s factor number p using embedded MatLab function 
factor:

>> factor(48730)

ans =	 2	 5	 11 443

2.	 Acting as in Example 1, we get 

p=48731;q=443;i=10000; while modulopower(i,q,p)~=1

i=i+1

end

…
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i =	 10228

So, e1=10228.

3.	 Selecting  d=357 we can calculate 𝑒2 = 𝑒1
𝑞−𝑑𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 

with help of MatLab

>> e1=10228;e2=modulopower(e1,q-d,p) e2 =	42300

Thus, Alice’s set of public keys consists of (10228,42300,48731,443).

Generating the Signature

Let’s consider the 2nd step

1.	 Alice select arbitrary number rϵ(1,q). It should be 
performed every time when she is going to transfer a new 
message.

2.	 Alice calculates and generates first signature S1  with 
help of hash function_:

S1=h(M|g1) where M is message; a|b denotes concatenation 
of expressions.

3.	 Alice calculates second signature S2=(r+d*S1)mod q.

4.	 Alice transfers M, S1  and S2.

Example 2

Calculate S1  and S2  for the test message M=1000 using Alice’s 
keys, generating in Example 1.

Solution.

1.	 Let’s use MATLAB embedded function randi to find r

>> q=1031;r=randi(q,1,1) ans = 987

2.	 Then we find g1

>> r=987;e1=70322;p=88667;g1= modulopower(e1,r,p)

g1 =	 85882

3.	 To define concatenation of numbers we write simple 
function for calculating the number of digits of g1:

function f=numdigits(x) 

n=x; k=1;

if n<10; 

s=0;

else

s=mod(n,10); 

while n>10;

h=mod(n,10); 

1

g=h/10; 

n=(n/10)-g; 

k=k+1;

end 

end

k 

end

Applying this function gives

>> numdigits(g1) 

k =	 5

So, concatenation will be done as

>> M=1000;M1=M*10^k+g1 

M1 = 100085882

4.	 To end this block we use hash function H(x)= x2 mod Z, 
where Z<p is integer which has the same digits as p:

>> M1=100085882; Z=76543;S1=mod(M1^2,Z)

S1 =	37718

5.	 Calculating S2

>> q=1031;d=755;r=987;S2=mod(r+d*S1,q) 

S2 = 826

Thus, expression to transfer are M=1000; S1=37718; S2=826.

Exercise 2. 

Calculate S1  and S2  for the test message M=2000 using Alice’s 
keys, generating in Exercise 1 with the same hash-function as 
in Example 2.

Solution

1.	 Let’s use MATLAB embedded function randi to find r

>> q1=443;r1=randi(q1,1,1) 

r1=63

2.	 Then we find g1

>> e1=10228;p1=48731;g1= modulopower(e1,r1,p1) 

g1 =	15963

3.	 To define concatenation of numbers we write simple 
function for calculating the number of digits of g1:

>> g1=15963; numdigits(g1) 

k=5

So, concatenations will be done as

>> M=2000;M1=M*10^k+g1 
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M1= 200015963

4.	 To end this block we use hash function H(x)= x2 mod Z as 
in Example 2

>> M1=200015963; Z=43210;S1=mod(M1^2,Z)

S1 =	12668

5.	 Calculating S2

>> q=443;d=357;r=63;S2=mod(r+d*S1,q) 

S2 = 395

Thus, expression to transfer are M=2000; S1=12668; S2=404.

Verification of the Signature

Let’s consider the last step.

After receiving pocket (M,S1,S2)  from Alice, Bob do the next 1)	

1.	 Calculates V=h(M| 𝑒1
𝑆2 𝑒2

𝑆1 𝑚od 𝑝).

2.	 Checks the validity of S2  mod p = V mod p. If true then a 
message is adopted if false then a message is rejected.

Example 3. 

Let’s check the Alice’s authenticity of the signature, generating 
in Example 2.

1.	 To calculate we will use the rule a·b mod p = ((a mod p)·(b 
mod p))mod p [9]. I.e. .

Applying function modulopower, for known values of 
e1,e2,S1,S2,p we get

>> e1=70322;e2=13136;S1=37718;S2=826;p=88667;

G=mod(modulopower(e1,S2,p)* modulopower(e2,S1,p),p) 

G =	 85882

2.	 To calculate h(M|G) we act analogously to the Example 2

>> numdigits(G); M1=M*10^k+G 

k =	 5

M1 = 100085882

>> Z=76543;V=mod(M1^2,Z) 

V =	 37718

Since V=S1 mod p, so the message is adopted.

Exercise 3.

Check the Alice’s authenticity of the signature, generating in 
Exercise 2.

Solution

1.	 Applying function modulopower, for known values of 
e1,e2,S1,S2,p we get

>> e1=10228;p=48731;e2=42300;S1=12668;S2=395;

G=mod(modulopower(e1,S2,p)* modulopower(e2,S1,p),p)

G =	 15963

2.	 To calculate h(M|G) we act analogously to the Example 2

>> numdigits(G); M1=M*10^k+G 

k =	 5

M1 = 200015963

>> Z=43210; V=mod(M1^2,Z) 

V =	 12668

Since V=S1 mod p, so the message is adopted.

SCHNORR AUTHENTICATION PROTOCOL

The algorithm of the protocol is as follows:

1.	 Pretreatment.

Alice chooses a random number r, (r< q) and calculates 
. These computations are preliminary and may be made 
long before Bob advents.

2.	 Initiation. Alice sends x to Bob.

3.	 Bob chooses a random number R between 0 and 2t-1 and 
sends it to Alice.

4.	 Alice computes S= r + dR (mod q) and sends S to Bob.

5.	 Confirmation. Bob computes (mod p) and identifies Alice 
if z=x.

The security of this algorithm depends on the parameter t. 
The autopsy of the algorithm is approximately equal to 2t. This 
algorithm can be also realized in MatLab without any difficulties.

CONCLUSION

The research paper about Schnorr’s Digital Signature gave 
me an idea of how my personal information was secured 
throughout the internet. Generating the key and authentication 
process was simple in form but complicated in decoding. Also, 
this process of exploration taught me how to use MATLAB 
and format a research paper. Exploring the way that digital 
signatures developed from the El Gamal digital signature to 
the Schnorr’s signature and how the United States adopted 
their DES to combine the two ways was intriguing in how the 
development took place.
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Throughout the history of cryptography, it always has been 
a matter of how the information can be secured secretly to 
prevent the hackers from hacking into the information and 
causing disruption. Authentication is an important matter 
since it proves the accuracy of the information. The fast 
developing hacking industry has induced developers to 
come up with a more secure and complicated method. Since 
nowadays, brute force attack can decrypt any message that is 
encrypted and it is the matter of time that causes problem, 
the key has to be longer and harder to find out. Especially, the 
quantum computers directly employ the quantum mechanical 
phenomena to perform the operation of data. They differ from 
digital computers and foster the speed of decryption. Coming 
up with the way to prevent the brute force attack can be a 
future object for people in the field but also decoding the key 
will always be parallel to the development.

Therefore, I would like to further explore how to generate 
and decode the key in a more efficient way. How to factorize 
the prime number has always been enigma to the developers 
in the field, so I want to explore how they came up with the 
thought and how efficient factorizing can take place using 
certain methods.
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