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1. PREFACE

Effective task-oriented dialogue systems are becoming 
important as society progresses toward us-ing voice for 
interacting with devices and perform-ing everyday tasks 
such as scheduling. To that end, research efforts have focused 
on using machine learning methods to train agents using 
dialogue corpora. One line of work has tackled the prob-lem 
using partially observable Markov decision processes and 
reinforcement learning with carefully designed action spaces.

However, the large, hand-designed action and state spaces 
make this class of models brittle and are not scalable,  
and in practice most deployed dialogue systems remain 
handwritten, rule based systems. Recently, neural network 
models have achieved success on a variety of natural 
language processing tasks, due to their ability to implicitly 
learn powerful distributed representations from data in an 
end-to-end trainabe fashion. This paper extends recent work 
examining the utility of distributed state representations for 
task-oriented dialogue agents, without providing rules or 
manually tuning features.

One prominent line of recent neural dialogue work has 
continued to build systems with modularly connected 
representation, belief state, and generation components. 
These models must learn to explicitly represent user intent 
through intermediate supervision, and hence suffer from 
not being truly end-to-end train-able. Other work stores 
dialogue context in a memory module and repeatedly queries 
and reasons about this context to select an adequate system 

response. While reasoning over memory is appealing, these 
models simply choose among a set of utterances rather than 
generating text and also must have temporal dialogue features 
explicitly encoded.

However, the present literature lacks results for now standard 
sequence-to-sequence architectures, and we aim to fill 
this gap by building increasingly complex models of text 
generation, starting with a vanilla sequence-to-sequence 
recurrent architec-ture. The result is a simple, intuitive, 
and highly competitive model, which outperforms the more 
complex model of Bordes and Weston (2016) by 6.9%. Our 
contributions are as follows:

1.	 We perform a systematic, empirical analysis of 
increasingly complex sequence-to-sequence models for 
task-oriented dialogue.

2.	 We develop a recur-rent neural dialogue architecture 
augmented with an attention-based copy mechanism that 
is able to significantly outperform more complex models 
on a variety of metrics on realistic data.

2.	 ARCHITECTURE

We use neural encoder-decoder architectures to frame 
dialogue as a sequence-to- sequence learning problem. Given 
a dialogue between a user (U) and a system (S), we represent 
the dialogue utterances as {(U1, S1), (U2, S2), . . . ,(Uk, Sk)} where 
k denotes the number of turns in the dialogue. At the ith turn 
of the dialogue, we encode the aggregated dialogue context 
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composed of the tokens of (U1,S1,…,Si−1, Ui). Letting x1, …, 

xm denote these tokens, we first embed these tokens using 

a trained embedding function φemb that maps each token to 

a fixed dimensional vector. These mappings are fed into the 

encoder to produce context sensitive hidden representations 

h1,…, hm.

The vanilla Seq2Seq decoder predicts the tokens of the ith 

system response Si by first computing decoder hidden states 

via the recurrent unit. We denote h1,…, hn as the hidden states 

of the decoder and y1, … , yn as the output tokens. We extend 

this decoder with an attention- based model, where, at every 

time step t of the decoding, an attention score at
i is computed 

for each hidden state hi of the encoder, using the attention 

mechanism of (Vinyals et al., 2015). Formally this attention 

can be described by the following equations:

Where W1, W2, U, and v are trainable parameters of the model 

and ot represents the logits over the tokens of the output 

vocabulary V. During training, the next token yt is predicted 

so as to maximize the log likelihood of the correct output 

sequence given the input sequence. An effective task-oriented 

dialogue system must have powerful language modelling 

capabilities and be able to pick up on relevant entities of an 

underlying knowledge base.

One source of relevant entities is that they will commonly 

have been mentioned in the prior discourse context.

Recent literature has shown that incorporating a copying 

mechanism into neural architectures improves performance 

on various sequence-to-sequence tasks including code 

generation, machine translation, and

text summarization. We therefore augment the attention 

encoder-decoder model with an attention-based copy 

mechanism in the style of (Jia and Liang, 2016). In this scheme, 

during decoding we compute our new logits vector as

 

Where at
[1:m] is the concatenated attention scores of the 

encoder hidden states, and we are now predicting over a 
vocabulary of size |V | + m. The model, thus, either predicts 
a token yt from V or copies a token xi from the encoder input 
context, via the attention score at

i . Rather than copy over 
any token mentioned in the encoder dialogue context, our 
model is trained to only copy over entities of the knowledge 
base mentioned in the dialogue context, as this provides a 
conceptually intuitive goal for the model’s predictive learning: 
as training progresses it will learn to either predict a token 
from the standard vocabulary of the language model thereby 
ensuring well-formed natural language utterances, or to copy 
over the relevant entities from the input context, thereby 
learning to extract important dialogue context. In our best 
performing model, we augment the inputs to the encoder by 
adding entity type features. Classes present in the knowledge 
base of the dataset, namely the 8 distinct entity types referred 
to in Table 1, are encoded as one hot vectors. Whenever a 
token of a certain entity type is seen during encoding, we 
append the appropriate one hot vector to the token’s word 
embedding before it is fed into the recurrent cell. These type 
features improve generalization to novel entities by allowing 
the model to hone in on positions with particularly relevant 
bits of dialogue context during its soft attention and copying. 
Other cited work using the DSTC2 dataset implement similar 
mechanisms whereby they expand the feature representations 
of candidate system responses based on whether there is 
lexical entity class matching with provided dialogue context

3.	 RESEARCH AND ANALYSIS.

3.1	 Data

For our experiments, we used dialogues extracted from the 
Dialogue State Tracking Challenge 2 (DSTC2) (Henderson 
et al., 2014), a restaurant reservation system dataset. While 
the goal of the original challenge was building a system for 
inferring dialogue state, for our study, we use the version of 
the data from Bordes and Weston (2016), which ignores the 
dialogue state annotations, using only the raw text of the 
dialogues. The raw text includes user and system utterances as 
well as the API calls the system would make to the underlying 
KB in response to the user’s queries. Our model then aims 
to predict both these system utterances and API calls, each 
of which is regarded as a turn of the dialogue. We use the 
train/validation/test splits from this modified version of the 
dataset. The dataset is appealing for a number of reasons:
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1.	 It is derived from a real-world system so it presents the 
kind of linguistic diversity and conversational abilities we 
would hope for in an effective dialogue agent.

2.	 It is grounded via an underlying knowledge base of 
restaurant entities and their attributes.

3.	 3.	 Previous results have been reported on it so we can 
directly compare our model performance. We include 
statistics of the dataset in Table 1.

3.2	 Learning And Development

We trained using a cross-entropy loss and the Adam optimizer 
(Kingma and Ba, 2015), applying dropout (Hinton et al., 2012) 
as a regularizer to the input and output of the LSTM. We 
identified hyper parameters by random search, evaluating on 
a held-out validation subset of the data. Dropout keep rates 
ranged from 0.75 to 0.95. We used word embeddings with size 
300, and hidden layer and cell sizes were set to 353, identified 
through our search. We applied gradient clipping with a 
clipvalue of 10 to avoid gradient explosions during training. 
The attention, output parameters, word embeddings, and 
LSTM weights were randomly initialized from a uniform unit-
scaled distribution in the style of (Sussillo and Abbott, 2015).

3.3	 Model Metrics

Evaluation of dialogue systems is known to be difficult (Liu 
et al., 2016). We employ several metrics for assessing specific 
aspects of our model, drawn from previous work:

	

•	 Per-Response Accuracy: Bordes and Weston (2016) 
report a per turn response accuracy, which tests their 
model’s ability to select the system response at a certain 
timestep. Their system does a multiclass classification 
over a predefined candidate set of responses, which was 
created by aggregating all system responses seen in the 
training, validation, and test sets. Our model actually 
generates each individual token of the response, and we 
consider a prediction to be correct only if every token of 
the model output matches the corresponding token in the 
gold response. Evaluating using this metric on our model 
is therefore significantly more stringent a test than for the 
model of Bordes and Weston (2016).

•	 Per-Dialogue Accuracy: Bordes and Weston (2016) 

also report a per-dialogue accuracy, which assesses their 
model’s ability to produce every system response of the 
dialogue correctly. We calculate a similar value of dialogue 
accuracy, though again our model generates every token 
of every response.

•	 BLEU: We use the BLEU metric, commonly employed 
in evaluating machine translation systems (Papineni et 
al., 2002), which has also been used in past literature 
for evaluating dialogue systems (Ritter et al., 2011; Li 
et al., 2016). We calculate average BLEU score over all 
responses generated by the system, and primarily report 
these scores to gauge our model’s ability to accurately 
generate the language patterns seen in DSTC2.

•	 Entity F1: Each system response in the test data defines 
a gold set of entities. To compute an entity F1, we micro-
average over the entire set of system dialogue responses. 
This metric evaluates the model’s ability to generate 
relevant entities from the underlying knowledge base and 
to capture the semantics of the user-initiated dialogue 
flow.

Our experiments show that sometimes our model generates 
a response to a given input that is perfectly reasonable, but 
is penalized because our evaluation metrics involve direct 
comparison to the gold system output. For example, given 
a user request for an australian restaurant, the gold system 
output is you are looking for an australian restaurant right? 
whereas our system outputs what part of town do you have in 
mind?, which is a more directed follow-up intended to narrow 
down the search space of candidate restaurants the system 
should propose.

3.4	 Reports

In Table 2, we present the results of our models compared to 
the reported performance of the best performing model of 
(Bordes and Weston, 2016), which is a variant of an end-to- 
end memory network (Sukhbaatar et al., 2015).

Their model is referred to as MemNN. We also include the 
model of (Liu and Perez, 2016), referred to as GMemNN, and 
the model of (Seo et al., 2016), referred to as QRN, which 
currently is the stateof-the-art. In the table, Seq2Seq refers 
to our vanilla encoder-decoder architecture with (1), (2), and 
(3) LSTM layers respectively. +Attn refers to a 1-layer Seq2Seq 
with  attention-based  decoding.  +Copy  refers  to  +Attn  with  
our  copy-mechanism   added. +EntType refers to +Copy with 
entity class features added to encoder inputs. We see that a 1- 
layer vanilla encoder-decoder is already able to significantly 
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outperform MemNN in both per- response and per-dialogue 
accuracies, despite our more stringent setting.

Adding layers to Seq2Seq leads to a drop in performance, 
suggesting an overly powerful model for the small dataset 
size. Adding an attention-based decoding to the vanilla model 
increases BLEU although per-response and per-dialogue 
accuracies suffer a bit. Adding our attention-based entity copy 
mechanism achieves substantial increases in perresponse 
accuracies and entity F1.

	     

Table 2: Evaluation on DSTC2 test (top) and dev (bottom) 
data. Bold values indicate our best performance.

A dash indicates unavailable values. including beating its per-
dialogue accuracy. It also achieves the highest entity F1.

4	 CONCLUSION

We have iteratively built out a class of neural models for 
task-oriented dialogue that is able to outperform other more 
intricately designed neural architectures on a number of 
metrics.

The model incorporates in a simple way abilities that we 
believe are essential to building good task-oriented dialogue 
agents, namely maintaining dialogue state and being able to 
extract and use relevant entities in its responses, without 
requiring intermediate supervision of dialogue state or belief 
tracker modules.

Other dialogue models tested on DSTC2 that are more 
performant in per-response accuracy are equipped with 
sufficiently more complex mechanisms than our model. 
GMemNN uses an explicit memory module as well as an adaptive 
gating mechanism to learn to attend to relevant memories.

We contrast with these works by bootstrapping off of more 
empirically accepted Seq2Seq architectures through intuitive 
extensions, while still producing highly competitive models. 
We attribute the large gains in per response accuracy and 
entity F1 demonstrated by our +EntType to its ability to pick 
out the relevant KB entities from the dialogue context fed into 
the encoder.

Table 3: Sample dialogue generated. System responses are in 
italics. The dataset uses fake addresses and phone numbers.

Figure 1: Attention-copy weights for a generated natural 
language response (top) and API call (bottom). The decoder 

output is displayed vertically and the encoder input is 
abbreviated for display weights of the model, indicating that 
the model is able to learn the relevant entities it should focus 

on in the input context.

The powerful language modelling abilities of the Seq2Seq 
backbone allow smooth integration of these extracted entities 
into both system-generated API calls and natural language 
responses as shown in the figure.

The appeal of our model comes from the simplicity and 
effectiveness of framing system response generation as a 
sequence-to-sequence mapping with a soft copy mechanism 
over relevant context. Unlike the task-oriented dialogue agents 
of Wen et. al (2016b), our architecture does not explicitly 
model belief states or KB slot-value trackers, and we preserve 
full end-to-end-trainability. Further, in contrast to other 
referenced work on DSTC2, our model offers more linguistic 
versatility due to its generative nature while still remaining 
highly competitive and outperforming other models. Of course, 
this is not to deny the importance of dialogue agents which 
can more effectively use a knowledge base to answer user 
requests, and this remains a good avenue for further work. 
Nevertheless, we hope this simple and effective architecture 
can be a strong baseline for future research efforts on task-
oriented dialogue.
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