
1

INTRODUCTION

A digital signature (DS) is a mathematical scheme for
demonstrating the authenticity of a digital message or
document. A valid digital signature gives a recipient reason to
believe that the message was created by a known sender, such
that the sender cannot deny having sent the message and that
the message was not altered in transit. DS are commonly used
for software distribution, financial transactions, and in other
cases where it is important to detect forgery or tampering [1].

EXPLANATION

DS are often used to implement electronic signatures, a
broader term that refers to any electronic data that carries
the intent of a signature, but not all electronic signatures use
digital signatures.

DS employ asymmetric cryptography. In many instances they
provide a layer of validation and security to messages sent
through a nonsecure channel: properly implemented, a digital
signature gives the receiver reason to believe the message
was sent by the claimed sender. Digital seals and signatures
are equivalent to handwritten signatures and stamped seals.
DS are equivalent to traditional handwritten signatures in
many respects, but properly implemented digital signatures
are more difficult to forge than the handwritten type. DS
can also provide non repudiation, meaning that the signer
cannot successfully claim they did not sign a message, while
also claiming their private key remains secret; further, some
non-repudiation schemes offer a time stamp for the digital
signature, so that even if the private key is exposed, the
signature is valid. Digitally signed messages may be anything
representable as a bitstring: examples include electronic mail,
contracts, or a message sent via some other cryptographic
protocol.

Technology of DS applying assumes that we have a network of
subscriber, sending signed electronic documents each other.
The pair of keys is generated for every subscriber – an open
key and a close key. Close key is kept secret by the abonent
and is used for generating of DS. Open key is known for all
users and is intended for the DS checking by the addressee of
electronic document. In other words, open key is necessary
tool for checking authority and authenticity of the document.

Open key does not allow calculating a secret one.In particular:
Alice wants to sign message m. She computes the signature
of m (let’s call it S) and sends the signed message (m,S) to
Bob. Bob gets (m,S), runs the verification algorithm on it. The
algorithm returns “true” if S is Alice’s signature of m.

RSA SIGNATURE SCHEME

The RSA digital signature scheme applies the sender’s private
key to a message to generate a signature. The signature can
then be verified by applying the corresponding public key
to the message and the signature through the verification
process, providing either a valid or invalid result. These two
operations — sign and verify — comprise the RSA digital
signature scheme [2]. Taking a closer look at the signature
generation portion of the process in Figure 1, the first step in
generating an RSA signature is applying a cryptographic hash
function to the message.

Figure 1. Generalized scheme of digital signature RSA

The hash function is specifically designed to reduce a message
of any length to a short number, called the “hash value”
(typically 160 bits long), and to do it in a way such that two
conditions are satisfied:

• It is difficult to find a message with a specific hash value.

• It is difficult to find two messages with the same hash
value (an easier problem to solve)

Let’s show how this this scheme works using Alice and Bob
actions description.

The algorithm is

Mapping and Recreating Digital Signature Algorithms Using MATLAB
Elizabeth Wright

2

1. Alice compresses the initial message M into integer
number m using hash-function

h:m=h(M).

2. Alice chooses secret big odd primes p,q and computes
N=p·q and ϕ(N)=(p-1)·(q-1).

3. Alice chooses eA with condition gcd (eA,ϕ(N))=1

4. Alice computes 𝑑𝐴 = 𝑒𝐴
−1𝑚o𝑑 𝜑(𝑁).

5. Alice’s signature is 𝑆 = 𝑚d𝐴𝑚o𝑑 𝑁. She sends signed
message is (M,S) to Bob.

6. Bob recover hash value m’ by calculating 𝑚′ = 𝑆𝑒𝐴𝑚od 𝑁.

7. Bob verify the signature by comparing m and m’. The
signature is valid if m=m’.

Extended Euclid’s algorithm for finding of
multiplicative inverse

To compute 𝑚𝑚𝐴𝐴 Alice should use a special technique -
Extended Euclid’s algorithm . Let’s recall that number d is
called the multiplicative inverse of e (modulo φ(n)) [3] if

𝑒 ∙ d ≡ 1(mod 𝜑(𝑛)) (1)

For illustration of extended Euclid’s algorithm acting we will
use two-stage scheme (see below) [4].

Pseudocode (stage 1)

AT THE INPUT: two natural a and b, a>=b

AT THE OUTPUT: D =GCD(a,b) and integers x and y such that
ax +by=D 1.

1. Let’s x1:=1, x2:=0, y1:=0, y2:=1

2. While b>0

3. q:=[a/b], r:=a-qb, x2:=x1-q*x2, y2:=y1-q*y2

4. a:=b, b:=r, x1:=x2, x1:=x, y1:=y2, y1:=y

5. Put D:=a, x:=x1, y:=y1 and return (D,x,y)

Here [c] means integer part of c.

Example

Let us find D=GCD(500,440) and integers x and y such that
500x +440y=D. Initial data:

x1:=1, x2:=0, y1:=0, y2:=1

1-st step:

q=[500/440]=1, r=500-1*440=60;

x2=1-0=1,y2=0-1=-1, a=440,b=60

It is suitable to place the intermediate results of computation
into the table:

№ a b q r x1 x2 y1 y2

1 500 440 1 60 1 0 0 1

2 400 60 7 20 0 1 1 -1

3 60 20 3 0 1 -7 -1 8

4 20 0 - - -7 22 8 -25

Summary : GCD(500,440)=20=500*(-7)+440*8.

This algorithm was realized in MATLAB (see e.g. [5]) as a
function gcd ([g,u,v] = gcd(A,B)) is calculated using the
extended Euclidian algorithm)

Part2

Algorithm for finding multiplicative inverse due to the formula (1)

Pseudocode (stage 2)

AT THE INPUT: two natural e and N.

AT THE OUTPUT: inverse of e in modulus of N.

1. Use extended Euclid’s algorithm for finding of x and y
such that ex + Ny = D, where D= GCD(e,N)

2. If D>1 then there is no inverse element else return x.

Exercise 1.

Generate a code realizing Extended Euclid›s algorithm in
Matlab. SolutionSee code below.

function R = reverse (M, N)

%Calculate reverse for M modulo N.

[x, y, d] = egcd(M, N);

if d == 1

R = mod(x, N)

return

end

end

function [x, y, d] = egcd(a, b)

%Extended Euclidean algorithm.

%Calculate greatest common divisor.

a = abs(a);

b = abs(b);

3

if b == 0

x = 1;

y = 0;

d = a;

return

end

x1 = 0;

x2 = 1;

y1 = 1;

y2 = 0;

while b > 0

q = floor(a / b);

r = a - q * b;

xtmp = x2 - q * x1;

ytmp = y2 - q * y1;

a = b;

b = r;

x2 = x1;

x1 = xtmp;

y2 = y1;

y1 = ytmp;

end

x = x2;

y = y2;

d = a;

end

Example of using

>> reverse(3, 5874292)

R = 3916195

Exercise 2.

Choose q=3083, p=1907 and check how the RSA signature
algorithm works for m= 146150163733090291820368483
2716283019655932542974 using Matlab.

Solution

See code below for Alice

function [m, s] = f2(P, Q, e, m)

n = P * Q

phi = (P - 1) * (Q - 1)

if e < 1 | e > phi | gcd(e, phi) ~= 1

 'Enter correct data’

end

d = reverse(e, phi)

s = modulopower(m, d, n)

end

function R = modulopower(X, N, M)

X = rem(X, M);

R = 1;

while N > 0

if rem(N, 2) == 0

X = rem(X * X, M);

N = N / 2;

else

R = rem(R * X, M);

 N = N - 1;

end

end

end

function R = reverse(M, N)

%Calculate reverse for M modulo N.

[x, y, d] = egcd(M, N);

 if d == 1

R = mod(x, N);

return

end

'There are no reverse for M modulo N.'

› end

function [x, y, d] = egcd(a, b)

%Extended Euclidean algorithm.

%Сalculate greatest common divisor.

a = abs(a);

b = abs(b);

if b == 0

x = 1;

y = 0;

d = a;

return

end

x1 = 0;

x2 = 1;

4

y1 = 1;

y2 = 0;

while b > 0

q = floor(a / b);

r = a - q * b;

xtmp = x2 - q * x1;

ytmp = y2 - q * y1;

a = b;

b = r;

x2 = x1;

x1 = xtmp;

y2 = y1;

y1 = ytmp;

end

x = x2;

y = y2;

d = a;

end

Example of using

>> f2(3083,1907,5777,146150163733090291820368483271

6283019655932542974)

n = 5879281

phi = 5874292

d = 64061

s = 4257374

The next function is for Bob

function f2_test(n, e, m, s)

mtest = modulopower(s, e, n)

m = rem(m, n)

if mtest == m

‘Document is authentic’

end

end

function R = modulopower(X, N, M)

 X = rem(X, M);

R = 1;

while N > 0

if rem(N, 2) == 0

X = rem(X * X, M);

N = N / 2;

else

R = rem(R * X, M);

N = N - 1;

end

end

end

function R = reverse(M, N)

%Calculate reverse for M modulo N.

… % See eponymous function above

end

function [x, y, d] = egcd(a, b)

%Extended Euclidean algorithm.

%Сalculate greatest common divisor.

… % See eponymous function above

 end

Example of using

>> f2_test(5879281,5777,14615016373309029182036848327

16283019655932542974,4257374)

mtest = 1748613

m = 1748613

ans = Document is authentic

RSA signature faults

RSA signature is vulnerable for so called multiplicative attack
[6]. In other words, RSA signature algorithm allow malefactor
to generate signatures on those documents which hashing
results can be computing by the product of signed documents
hashing results without of knowing secret key d.

Suppose, that attacker can construct 3 messages M1,M2 and
M3 with hash-values

m1=h(M1), m2=h(M2), m3=h(M3),

moreover

m3=m1*m2 (mod N).

We also assume, that for two messages M1,M2 low signatures
S1 and S2 were obtained:

𝑆1 = 𝑚d
1𝑚od 𝑁, 𝑆2 = 𝑚d

2𝑚od 𝑁.

Then malefactor could easy calculate signature S3 for the
document M3 without knowing secret key d:

S=S1*S2 (mod N).

Indeed,

S1*S2 (mod N)= 𝑚d
1 ∙ 𝑚d

2 (mod 𝑁) = (𝑚1 ∙ 𝑚2)
d(mod 𝑁) =

𝑚d
3 (mod 𝑁) = 𝑆3.

5

More reliable and suitable DS algorithm was designed by El
Gamal [7].

El Gamal signature scheme

The idea of El Gamal Singnature Algorithm (EGSA) is based
on the fact that to justify the practical impossibility of
falsification of the digital signature can be used more complex
computational problems than factoring a large integer - the
discrete logarithm problem. In addition, El Gamal avoided
overt weakness of RSA digital signature algorithm, coupled
with the possibility of forgery of digital signatures under
some messages without specifying a secret key.

Let us consider the digital signature algorithm El Gamal. In
order to generate a key pair (public key - a secret key), a first
chosen large prime integer P and large integer G, where G <R.
The sender of the signed document (Alice) and receiver (Bob)
use in the calculations similar large integers P (~ 10308 or ~
21024) and G (~ 10154 or ~ 2512), which are not secret.

The algorithm is

1. Alice chooses random integer X, 1< Х ≤ (Р-1), and compute

Y =G

X mod Р.

The number Y is the public key used to verify the signature
of the sender. The number of Y is open to all potential
recipients of transferred documents. The number X is the
sender›s private key for signing documents and should be
kept secret.

2. Alice hashes a message M using the hash function h:

m=h(M), 1<m<(Р-1),

and generates random integer K,

1<K<(P-1) such that K and (P-1) are coprime.

3. Alice computes an integer a by the formula

a = G
K mod Р.

4. Alice computes integer b, solving the equation (see
e.g.[9]):

m=X*a+K*b (mod (P-1))

with help of extended Euclid›s algorithm.

The pair of numbers (a,b) form digital signature S

S=(a,b)

affixed to the document M.

A triple (M, a, b) is sent to the recipient, while the pair (X,
K) is kept secret.

5. After receiving the signed message (M, a, b) Bob should
verify is the signature

S = (a, b) corresponding to the message M.

He first calculates the hash-value of the received message M:

m = h (M).

6. Then he calculates the value

А = Ya ab (mod Р)

and recognizes the message authentic if and only if

А = Gm (mod Р).

In other words, a receiver checks the equity of ratio

Ya ab (mod Р)= Gm (mod Р).

One can be strictly mathematically shown that the last
equation is satisfied if and only if the signature is S = (a, b)
under the document M is obtained using a secret key of X,
from which the public key Y was obtained. Thus, one can
reliably make sure that the sender of the message M was the
holder of the private key is X, without disclosing the key itself,
and that the sender signed namely this concrete document M.

It should be noted that the execution of each signature on the
El Gamal method requires a new value of K, and this value
should be chosen randomly. If an intruder ever discloses the
value of K, reusable sender, then he will be able to reveal the
secret key X sender.

Example 3.

Let’s choose: the numbers R = 11, G = 2 and the secret key X =
8. Calculating the value of the public key:

Y = GX mod P = Y = 28 mod 11 = 3.

Assume that the original message M is characterized by the
hash value m = 5.

In order to compute the digital signature for the message M having
a hash value m = 5, first select a random integer K = 9. Make sure
that the number of K and (P-1) are coprime. Indeed, gcd (9,10) =
1. Next, calculate the elements a and b of the signature:

a = GK mod P = 29 mod 11 = 6

Then determine the element b by using an extended Euclid›s
algorithm:

m = X * a + K * b (mod (P-1)).

When m = 5, a = 6, X = 8, K = 9, P = 11 we obtain 5 =

(6*8 + 9 * b) (mod 10)

or

6

9 * b = -43 (mod 10).

Solution:

b = 3.

A digital signature is a pair: a = 6, b = 3. Then the sender sends
the signed message. By adopting a signed message and the
public key Y = 3, the receiver calculates the hash value for the
message M:

m = 5

and then calculates two numbers:

1) Yaab (mod Р) = 36 * 63 (mod 11) =10 (mod 11);

2) Gm (mod Р) = 25 (mod 11) =10 (mod 11).

Since these two integers are equal, the message, taken by
the recipient, deemed authentic.

Exercise 3.

Generate MatLab code to realize El Gamal signature scheme
including

a. Fixation of P, G, X values and hash-value m

b. Computing open key Y and selection of K satisfying (2).

c. Computing a & b for signature, using a program module,
generating in the Exercise1.

d. Computing Yaab (mod Р) and Gm (mod Р)

e. Output of the message like “message deemed authentic”

Solution

See code below

function [a, b] = f3(P, G, X, M)

m = hash(M);

Y = modulopower(G, X, P);

%Generate random K

while 1

K = randi(P - 1);

if gcd(K, P - 1) == 1

break

end

end

a = modulopower(G, K, P);

b = mod(reverse(K, P - 1) * (m - X * a), P - 1);

end

function m = hash(M)

m = length(M);

end

function R = modulopower(X, N, M)

X = rem(X, M);

R = 1;

while N > 0

if rem(N, 2) == 0

X = rem(X * X, M);

N = N / 2;

else

R = rem(R * X, M);

N = N - 1;

end

end

end

function R = reverse(M, N)

%Calculate reverse for M modulo N.

… % See eponymous function above

end

function [x, y, d] = egcd(a, b)

%Extended Euclidean algorithm.

%Сalculate greatest common divisor.

…% See eponymous function above

end

Example of using

>> f3(11,2,8,›Example of El Gamal digital signature›)

a = 2

b = 1

Let’s remark, that the numbers a and b in this fragment are
different from the same in the

Example 3

Cause of this is in the random character of k.

For checking of authenticity we generate the next Matlab
function

function f4(P, G , Y, a, b, M)

m = hash(M);

A1 = mod(modulopower(Y, a, P) * modulopower(a, b, P), P);

7

A2 = modulopower(G, m, P);

if A1 == A2

'Document is authentic’

end

end

function m = hash(M)

m = length(M);

end

function R = modulopower(X, N, M)

… % See eponymous function above

end

function R = reverse(M, N)

%Calculate reverse for M modulo N.

… % See eponymous function above

end

function [x, y, d] = egcd(a, b)

%Extended Euclidean algorithm.

%Сalculate greatest common divisor.

… % See eponymous function above

end

Example of using

>> f4(11,2,3,2,1,›Example of El Gamal digital

signature›)

ans = Document is authentic

It should be noted that EGSA is a typical example of an
approach that permits sending the message M in the open
form together with the attached authenticator (a, b). In such
cases, the procedure of establishing the authenticity of the
received message consists on the verifying of compliance a
message to the authenticator.

Digital signature scheme El Gamal has a number of advantages
over digital signature scheme RSA:

1. For a given level of firmness of DS algorithm, the
integers involved in the calculations have a quarter
shorter representations, which halve the computational

complexity and noticeably decreases the amount of
memory used.

2. When you select a module P it is sufficient to verify that
this number is simple and that the number (P-1) has a
large prime factor (i.e., only two the conditions simply
checking).

3. The procedure for signature generation due to El Gamal
scheme does not allow calculate digital signatures for the
new messages without the knowing of the secret key (as
in the RSA).

References

1. Digital signature URL: http://en.wikipedia.org/wiki/Digital_

signature

2. Kaliski B. S. RSA Digital Signatures // Dr. Dobb’s electronic

journal, May 01, 2001. URL: http://www.drdobbs.com/rsa-

digital-signatures/184404605

3. Modular multiplicative inverse URL: http://en.wikipedia.org/

wiki/Modular_multiplicative_inverse

4. Bogatov E. MATHEMATICA realization of Encryption algorithm

based cryptosystem RSA.

5. MATLAB URL: http://en.wikipedia.org/wiki/MATLAB

6. Misarsky J-F. A Multiplicative Attack Using LLL Algorithm on

RSA Signatures with Redundancy // Proceeding CRYPTO ‹97.

P.221-234

7. ElGamal signature scheme URL: http://en.wikipedia.org/wiki/

ElGamal_signature_scheme

8. Discrete logarithm URL: http://en.wikipedia.org/wiki/

Discrete_logarithm

9. Bogatov E. MATHEMATICA realization of ELGAMAL Encryption

algorithm

