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INTRODUCTION

A digital signature (DS) is a mathematical scheme for 
demonstrating the authenticity of a digital message or 
document. A valid digital signature gives a recipient reason to 
believe that the message was created by a known sender, such 
that the sender cannot deny having sent the message and that 
the message was not altered in transit. DS are commonly used 
for software distribution, financial transactions, and in other 
cases where it is important to detect forgery or tampering [1].

EXPLANATION

DS are often used to implement electronic signatures, a 
broader term that refers to any electronic data that carries 
the intent of a signature, but not all electronic signatures use 
digital signatures.

DS employ asymmetric cryptography. In many instances they 
provide a layer of validation and security to messages sent 
through a nonsecure channel: properly implemented, a digital 
signature gives the receiver reason to believe the message 
was sent by the claimed sender. Digital seals and signatures 
are equivalent to handwritten signatures and stamped seals. 
DS are equivalent to traditional handwritten signatures in 
many respects, but properly implemented digital signatures 
are more difficult to forge than the handwritten type.  DS 
can also provide non repudiation, meaning that the signer 
cannot successfully claim they did not sign a message, while 
also claiming their private key remains secret; further, some 
non-repudiation schemes offer a time stamp for the digital 
signature, so that even if the private key is exposed, the 
signature is valid. Digitally signed messages may be anything 
representable as a bitstring: examples include electronic mail, 
contracts, or a message sent via some other cryptographic 
protocol.

Technology of DS applying assumes that we have a network of 
subscriber, sending signed electronic documents each other. 
The pair of keys is generated for every subscriber – an open 
key and a close key. Close key is kept secret by the abonent 
and is used for generating of DS. Open key is known for all 
users and is intended for the DS checking by the addressee of 
electronic document. In other words, open key is necessary 
tool for checking authority and authenticity of the document. 

Open key does not allow calculating a secret one.In particular: 
Alice wants to sign message m. She computes the signature 
of m (let’s call it S) and  sends the signed message (m,S)  to 
Bob. Bob gets (m,S), runs the verification algorithm on it.  The 
algorithm returns “true” if S is Alice’s signature of m.

RSA SIGNATURE SCHEME

The RSA digital signature scheme applies the sender’s private 
key to a message to generate a signature. The signature can 
then be verified by applying the  corresponding public key 
to the message and the signature through the verification 
process, providing either a valid or invalid result. These two 
operations — sign and verify — comprise the RSA digital 
signature scheme [2]. Taking a closer look at the signature 
generation portion of the process in Figure 1, the first step in 
generating an RSA signature is applying a cryptographic hash 
function to the message.

Figure 1. Generalized scheme of digital signature RSA

The hash function is specifically designed to reduce a message 
of any length to a short number, called the “hash value” 
(typically 160 bits long), and to do it in a way such that two 
conditions are satisfied:

• It is difficult to find a message with a specific hash value.

• It is difficult to find two messages with the same hash 
value (an easier problem to solve) 

Let’s show how this this scheme works using Alice and Bob 
actions description.

The algorithm is 
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1. Alice compresses the initial message M into integer 
number m using hash-function 

h:m=h(M).

2. Alice chooses secret big odd primes p,q and computes 
N=p·q and ϕ(N)=(p-1)·(q-1).

3. Alice chooses eA with condition gcd (eA,ϕ(N))=1

4. Alice computes 𝑑𝐴 = 𝑒𝐴
−1𝑚o𝑑 𝜑(𝑁).

5. Alice’s signature is 𝑆 = 𝑚d𝐴𝑚o𝑑 𝑁. She sends signed 
message is (M,S) to Bob.

6. Bob recover hash value m’ by calculating 𝑚′ = 𝑆𝑒𝐴𝑚od 𝑁.

7. Bob verify the signature by comparing m and m’. The 
signature is valid if m=m’.

Extended Euclid’s algorithm for finding of 
multiplicative inverse

To compute 𝑚𝑚𝐴𝐴 Alice should use a special technique - 
Extended Euclid’s algorithm . Let’s recall that number d is 
called the multiplicative inverse of e (modulo φ(n)) [3] if

𝑒 ∙ d ≡ 1(mod 𝜑(𝑛))                                         (1)

For illustration of extended Euclid’s algorithm acting we will 
use two-stage scheme (see below) [4].

Pseudocode (stage 1)

AT THE INPUT: two natural a and b, a>=b

AT THE OUTPUT: D =GCD(a,b) and integers x and y such that 
ax +by=D 1.   

1. Let’s x1:=1, x2:=0, y1:=0, y2:=1

2. While b>0

3. q:=[a/b], r:=a-qb, x2:=x1-q*x2, y2:=y1-q*y2

4. a:=b, b:=r, x1:=x2, x1:=x, y1:=y2, y1:=y

5. Put D:=a, x:=x1, y:=y1 and return (D,x,y)

Here [c] means integer part of c.

Example

Let us find D=GCD(500,440) and integers x and y such that 
500x +440y=D. Initial data: 

x1:=1, x2:=0, y1:=0, y2:=1  

1-st step:

q=[500/440]=1, r=500-1*440=60;

x2=1-0=1,y2=0-1=-1, a=440,b=60

It is suitable to place the intermediate results of computation 
into the table:

№ a b q r x1 x2 y1 y2

1 500 440 1 60 1 0 0 1

2 400 60 7 20 0 1 1 -1

3 60 20 3 0 1 -7 -1 8

4 20 0 - - -7 22 8 -25

Summary : GCD(500,440)=20=500*(-7)+440*8.

This algorithm was realized in MATLAB (see e.g. [5]) as a 
function gcd ([g,u,v] = gcd(A,B)) is calculated using the 
extended Euclidian algorithm) 

Part2 

Algorithm for finding multiplicative inverse due to the formula (1)

Pseudocode (stage 2)

AT THE INPUT: two natural e and N.

AT THE OUTPUT: inverse of e in modulus of N.

1. Use extended Euclid’s algorithm for finding of x and y 
such that ex + Ny = D, where D= GCD(e,N)

2. If D>1 then there is no inverse element else return x.

Exercise 1.

Generate a code realizing Extended Euclid›s algorithm in 
Matlab. SolutionSee code below.

function R = reverse (M, N)

%Calculate reverse for M modulo N.

[x, y, d] = egcd(M, N);

if d == 1

R = mod(x, N) 

return

end

end

function [x, y, d] = egcd(a, b)

%Extended Euclidean algorithm.

%Calculate greatest common divisor.

a = abs(a);

b = abs(b);
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if b == 0

x = 1;

y = 0;

d = a; 

return

end

x1 = 0;

x2 = 1;

y1 = 1;

y2 = 0;

while b > 0

q = floor(a / b);

r = a - q * b;

xtmp = x2 - q * x1;

ytmp = y2 - q * y1;

a = b; 

b = r;

x2 = x1;

x1 = xtmp;

y2 = y1;

y1 = ytmp;

end

x = x2;

y = y2;

d = a;

end

Example of using

>> reverse(3, 5874292)

R = 3916195

Exercise 2.

Choose q=3083, p=1907  and  check  how  the  RSA  signature  
algorithm  works  for  m= 146150163733090291820368483
2716283019655932542974 using Matlab.

Solution

See code below for Alice

function [m, s] = f2(P, Q, e, m)

n = P * Q

phi = (P - 1) * (Q - 1)

if e < 1 | e > phi | gcd(e, phi) ~= 1

 'Enter correct data’

end

d = reverse(e, phi)

s = modulopower(m, d, n) 

end

function R = modulopower(X, N, M)

X = rem(X, M);

R = 1;

while N > 0

if rem(N, 2) == 0

X = rem(X * X, M);

N = N / 2;

else

R = rem(R * X, M);

 N = N - 1;

end 

end

end

function R = reverse(M, N)

%Calculate reverse for M modulo N.

[x, y, d] = egcd(M, N);

 if d == 1

R = mod(x, N);

return

end

'There are no reverse for M modulo N.'

› end

function [x, y, d] = egcd(a, b)

%Extended Euclidean algorithm.

%Сalculate greatest common divisor.

a = abs(a);

b = abs(b);

if b == 0

x = 1;

y = 0;

d = a; 

return

end

x1 = 0;

x2 = 1;
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y1 = 1;

y2 = 0;

while b > 0

q = floor(a / b); 

r = a - q * b;

xtmp = x2 - q * x1; 

ytmp = y2 - q * y1;

a = b;  

b = r;

x2 = x1; 

x1 = xtmp; 

y2 = y1; 

y1 = ytmp;

end

x = x2;

y = y2; 

d = a; 

end

Example of using

>> f2(3083,1907,5777,146150163733090291820368483271

6283019655932542974) 

n = 5879281

phi = 5874292

d = 64061

s = 4257374

The next function is for Bob

function f2_test(n, e, m, s)

mtest = modulopower(s, e, n)

m = rem(m, n)

if mtest == m

‘Document is authentic’

end 

end

function R = modulopower(X, N, M)

 X = rem(X, M);

R = 1;

while N > 0

if rem(N, 2) == 0

X = rem(X * X, M); 

N = N / 2;

else

R = rem(R * X, M); 

N = N - 1;

end 

end 

end

function R = reverse(M, N)

%Calculate reverse for M modulo N.

… % See eponymous function above 

end

function [x, y, d] = egcd(a, b)

%Extended Euclidean algorithm.

%Сalculate greatest common divisor.

… % See eponymous function above

 end

Example of using

>>  f2_test(5879281,5777,14615016373309029182036848327

16283019655932542974,4257374)

mtest = 1748613

m = 1748613

ans = Document is authentic

RSA signature faults

RSA signature is vulnerable for so called multiplicative attack 
[6]. In other words, RSA signature algorithm allow malefactor 
to generate signatures on those documents which hashing 
results can be computing by the product of signed documents 
hashing results without of knowing secret key d.

Suppose, that attacker can construct 3 messages M1,M2 and 
M3 with hash-values

m1=h(M1), m2=h(M2), m3=h(M3),

moreover

m3=m1*m2 (mod N).

We also assume, that for two messages M1,M2 low signatures 
S1 and S2 were obtained:

𝑆1 = 𝑚d
1𝑚od 𝑁, 𝑆2 = 𝑚d

2𝑚od 𝑁.

Then malefactor could easy calculate signature S3 for the 
document M3 without knowing secret key d:

S=S1*S2 (mod N).

Indeed,

S1*S2 (mod N)= 𝑚d
1 ∙ 𝑚d

2 (mod 𝑁) = (𝑚1 ∙ 𝑚2)
d(mod 𝑁) = 

𝑚d
3 (mod 𝑁) = 𝑆3.
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More reliable and suitable DS algorithm was designed by El 
Gamal [7]. 

El Gamal signature scheme

The idea of El Gamal Singnature Algorithm (EGSA) is based 
on the fact that to justify  the practical impossibility of 
falsification of the digital signature can be used more complex 
computational problems than factoring a large integer - the 
discrete logarithm problem. In addition, El Gamal avoided 
overt weakness of RSA digital signature algorithm, coupled 
with the possibility of forgery of digital signatures under 
some messages without specifying a secret key.

Let us consider the digital signature algorithm El Gamal. In 
order to generate a key pair (public key - a secret key), a first 
chosen large prime integer P and large integer G, where G <R. 
The sender of the signed document (Alice) and receiver (Bob) 
use in the calculations similar large integers P (~ 10308 or ~ 
21024) and G (~ 10154 or ~ 2512), which are not secret. 

The algorithm is

1. Alice chooses random integer X, 1< Х ≤ (Р-1), and compute

Y =G 

X mod Р.

The number Y is the public key used to verify the signature 
of the sender. The number of Y is open to all potential 
recipients of transferred documents. The number X is the 
sender›s private key for signing documents and should be 
kept secret.

2. Alice hashes a message M using the hash function h: 

m=h(M), 1<m<(Р-1),

and generates random integer K,

1<K<(P-1) such that K and (P-1) are coprime.

3. Alice computes an integer a by the formula

a = G 
K mod Р.

4. Alice computes integer b, solving the equation (see 
e.g.[9]):

m=X*a+K*b (mod (P-1))

with help of extended Euclid›s algorithm.

The pair of numbers (a,b) form digital signature S

S=(a,b)

affixed to the document M.

A triple (M, a, b) is sent to the recipient, while the pair (X, 
K) is kept secret.

5. After receiving the signed message (M, a, b) Bob should 
verify is the signature

S = (a, b) corresponding to the message M.

He first calculates the hash-value of the received message M:

m = h (M).

6. Then he calculates the value

А = Ya ab (mod Р)

and recognizes the message authentic if and only if

А = Gm (mod Р).

In other words, a receiver checks the equity of ratio

Ya ab (mod Р)= Gm (mod Р).

One can be strictly mathematically shown that the last 
equation is satisfied if and only if the signature is S = (a, b) 
under the document M is obtained using a secret key of X, 
from which the public key Y was obtained. Thus, one can 
reliably make sure that the sender of the message M was the 
holder of the private key is X, without disclosing the key itself, 
and that the sender signed namely this concrete document M.

It should be noted that the execution of each signature on the 
El Gamal method requires a new value of K, and this value 
should be chosen randomly. If an intruder ever discloses the 
value of K, reusable sender, then he will be able to reveal the 
secret key X sender.

Example 3.

Let’s choose: the numbers R = 11, G = 2 and the secret key X = 
8. Calculating the value of the public key:

Y = GX mod P = Y = 28 mod 11 = 3. 

Assume that the original message M is characterized by the 
hash value m = 5.

In order to compute the digital signature for the message M having 
a hash value m = 5, first select a random integer K = 9. Make sure 
that the number of K and (P-1) are coprime. Indeed, gcd (9,10) = 
1. Next, calculate the elements a and b of the signature:

a = GK mod P = 29 mod 11 = 6

Then determine the element b by using an extended Euclid›s 
algorithm:

m = X * a + K * b (mod (P-1)).

When m = 5, a = 6, X = 8, K = 9, P = 11 we obtain 5 = 

(6*8 +  9 * b) (mod 10)

or
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9 * b = -43 (mod 10).

Solution:

b = 3.

A digital signature is a pair: a = 6, b = 3. Then the sender sends 
the signed message. By adopting a signed message and the 
public key Y = 3, the receiver calculates the hash value for  the 
message M:

m = 5

and then calculates two numbers:

1) Yaab (mod Р) = 36 * 63 (mod 11) =10 (mod 11);

2) Gm (mod Р) = 25 (mod 11) =10 (mod 11).

Since  these  two  integers  are  equal,   the  message, taken  by  
the  recipient,  deemed authentic.

Exercise 3.

Generate MatLab code to realize El Gamal signature scheme 
including

a. Fixation of P, G, X values and hash-value m

b. Computing open key Y and selection of K satisfying (2).

c. Computing a & b for signature, using a program module, 
generating in the Exercise1.

d. Computing Yaab (mod Р) and Gm (mod Р)

e. Output of the message like “message deemed authentic”

Solution

See code below

function [a, b] = f3(P, G, X, M) 

m = hash(M);

Y = modulopower(G, X, P);

%Generate random K

while 1

K = randi(P - 1);

if gcd(K, P - 1) == 1 

break

end

end

a = modulopower(G, K, P);

b = mod(reverse(K, P - 1) * (m - X * a), P - 1);

end

function m = hash(M)

m = length(M);

end

function R = modulopower(X, N, M)

X = rem(X, M);

R = 1;

while N > 0

if rem(N, 2) == 0

X = rem(X * X, M); 

N = N / 2;

else

R = rem(R * X, M); 

N = N - 1;

end

end

end

function R = reverse(M, N)

%Calculate reverse for M modulo N.

… % See eponymous function above 

end

function [x, y, d] = egcd(a, b)

%Extended Euclidean algorithm.

%Сalculate greatest common divisor.

…% See eponymous function above 

end

Example of using

>> f3(11,2,8,›Example of El Gamal digital signature›)

a = 2

b = 1

Let’s remark, that the numbers a and b in this fragment are 
different from the same in the

Example 3

Cause of this is in the random character of k.

For checking of authenticity we generate the next Matlab 
function

function f4(P, G , Y, a, b, M) 

m = hash(M);

A1 = mod(modulopower(Y, a, P) * modulopower(a, b, P), P); 
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A2 = modulopower(G, m, P);

if A1 == A2

'Document is authentic’

end 

end

function m = hash(M) 

m = length(M);

end

function R = modulopower(X, N, M)

… % See eponymous function above 

end

function R = reverse(M, N)

%Calculate reverse for M modulo N.

… % See eponymous function above 

end

function [x, y, d] = egcd(a, b)

%Extended Euclidean algorithm.

%Сalculate greatest common divisor.

… % See eponymous function above 

end

Example of using

>> f4(11,2,3,2,1,›Example of El Gamal digital 

signature›)

ans = Document is authentic

It should be noted that EGSA is a typical example of an 
approach that permits sending  the message M in the open 
form together with the attached authenticator (a, b). In such 
cases, the procedure of establishing the authenticity of the 
received message consists on the verifying of compliance a 
message to the authenticator.

Digital signature scheme El Gamal has a number of advantages 
over digital signature scheme RSA:

1. For a given level of firmness of DS algorithm, the 
integers involved in the  calculations have a quarter 
shorter representations, which halve the computational 

complexity and noticeably decreases the amount of 
memory used.

2. When you select a module P it is sufficient to verify that 
this number is simple and that the number (P-1) has a 
large prime factor (i.e., only two the conditions simply 
checking).

3. The procedure for signature generation due to El Gamal 
scheme does not allow calculate digital signatures for the 
new messages without the knowing of the secret key (as 
in the RSA).
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