
1

1. INTRODUCTION

Game of Battleship. Battleship is a strategic guessing game
for two players. It was first played as a pencil and paper
game dating in World War I. Each player has two boards
composed of 10 × 10 grids; one to position the player’s ships
and to check the opponent’s guess, and the other to record the
player’s guess. There are 5 ships, which are Carrier, Battleship,
Cruiser, Submarine, Destroyer, and they have sizes of 5, 4, 3,
3, and 2 grids, respectively. Ships need to be positioned only
horizontally or vertically and cannot share a grid. Unlike
other board games such as chess and checkers, Battleship is
not a combinatorial game because it is played with imperfect
information (i.e. the initial ship configuration is hidden to the
opponent).

Before the game starts, both players secretly position their
ships on their first board. Then, each player takes turns to guess
a target square on the opponent’s board. Each of them has to
tell the other whether the guess “hit”, “missed”, or “sank” a ship.
If a ship sank, the name and size of the ship should be revealed.
Whoever first sinks all of the opponent’s ship wins the game1.
However, there are a lot of variants to this game. For example,
the rule of a well-known variant is only revealing if the opponent
has hit or missed a ship, unrevealing if a ship has sunk.

Design of the Research. For simplicity, I designed the
Battleship game so that only the information of “hit” and
“miss” are allowed to the players.

1	 Battleship Official Hasbro Rules, Rulebook insert for Battleship (2002 version)

I am going to define guessing the ships as “attack”, and placing
the ships as “defense.” So, according to this definition, the
Battleship is a two-player game setting a defense strategy in
the beginning and continuously attacking each other. Thus,
there are two factors in the game, which are the attack/
defense of each player. An attack can be evaluated as good, or
bad. This applies to defense, as well. Thus, I defined the four
factors shown below.

	– Good Attack: Guessing ships according to the opponent’s defense

	– Good Defense: Placing ships according to the opponent’s attack

	– Bad Attack: Guessing ships randomly

	– Bad Defense: Placing ships randomly

 Design of the Paper. Section two is about good attacks
 when played against bad defense. I made the computer to
generate a game board with randomly placed ships to im-
 plement bad defense. Section three is about good defense
 against good attacks. I created several ship configurations
 which I assumed to be good defense and experimented
 with good attacks discussed in section two. Finally, in the
.conclusion part, I put the results altogether

2. “GOOD” ATTACKS AGAINST “BAD” DEFENSE

The basic outline for the calculation of the average number
of turns an attack strategy took to finish the game is shown in
algorithm. numOfGames represents the number of games that

Chanbin Park

Handong International School

ABSTRACT

Battleship is a well-known strategic guessing game played by two players. The players first place their
ships and then continuously try to sink every ship of the opponent. In this paper, the act of placing ships is
defined as “defense”, and the act of guessing ships is defined as “attack”. The goal of this paper was to find
good attacks against bad defense and good defense against good attack strategies. First, two good attack
strategies, hunt and target/probability density strategy, are introduced and are compared with a randomly
guessing strategy. Especially, when implementing the probability density strategy, using bit optimization
resulted in a significantly faster algorithm than a naive implementation. Then, in the final section, several
good defense strategies against the two good attack strategies are shown.

Optimal Strategies on Attack and Defense in the Game of Battleship

2

the computer simulates, numOfTurns represents how many
turns the attack strategy spent finishing each game, and the
totalTurns is the sum of every numOfTurns.

function Example()
numOfGames ← 0, numOfTurns ← 0, totalTurns ← 0
for each games do

while true do
make a guess and increment numOfTurns  making a
guess differs by methods
if every ship sank then

	 totalTurns ← totalTurns + numOfTurns
	 numOfTurns ← 0

	 break

end if
end while

end for
avgNum ← numOfTurns/numOfGames

end function

Algorithm 1: Calculating average number of turns

2.1. Random Strategy

Implementation. Before I discuss some good attacks, I
would like to introduce what a bad attack (random strategy)
would look like. This algorithm randomly guesses grids until
it hits every ship on the board. Note that random(a, b) returns
a random value between a and b, both inclusive.

function GuessRandom()
numOfTurns ← numOfTurns + 1
row ← random(0, HEIGHT - 1), col ← random(0, WIDTH - 1)

while row, col is guessed before do
row ← random(0, HEIGHT - 1), col ← random(0,
WIDTH - 1)

end while

if a ship is hit then
mark hit

else
mark miss

end if
end function

Algorithm 2: Perform a random guess

2.2. Hunt and Target Strategy

Explanation. Basically, Hunt and Target strategy is a
greedy solution that is used by many people. It has two stages
of action. During the “hunt” stage, the computer guesses
randomly until it hits a ship. Then, during the “target” stage,
the computer guesses the squares adjacent to the recent shot
in every direction until there is no more square that contains
a ship. Thus this algorithm repeats the hunt and target stage

until it sinks every ship. The row number starts from the top
as 0, and the col number starts from the left as 0.

Figure 1: Hunt Stage

To visualize, as shown in Figure 1, when the computer is in
the hunt stage, it guesses any grid randomly. The first picture
shows the initial configuration of the board. The next picture
shows that the algorithm guessed (1, 7), which is an empty
grid. Then, it guesses an empty grid on (5, 2), remaining in
the “hunt” stage.

Figure 2: Target Stage

(a) (b)

(c) (d)

(e)

3

However, when a target is hit, shown in (a), the computer turns

to the target stage. It searches for all the grids adjacent(not

including grids connected diagonally) to the grid that is hit.

As shown in picture (b), the computer has guessed (4, 2), an

adjacent grid to the hit shown in (a). Then, it guesses another

adjacent grid (4, 0) to the original hit, shown in (c). When the

computer succeeds in hitting another part of the ship, like in

(d), then it guesses all grids adjacent to that grid as well. When

there are no other adjacent grids to guess, it returns to the

hunt stage. Picture (e) describes the board after the algorithm

returned to its hunt stage.

Implementation. Algorithm 3 shows the pseudocode for

hunt stage.

function HuntAndTarget()

row ← random(0, HEIGHT - 1), col ← random(0, WIDTH - 1)

while row, col is guessed before do

row ← random(0, HEIGHT - 1), col ← random(0, WIDTH - 1)

end while

if a ship is hit then

mark hit

numOfTurns ← numOfTurns + 1

SearchAdj(row, col)  a function that searches adjacent grids(algorithm 4)

else

mark miss

numOfTurns ← numOfTurns + 1

end if

end function

Algorithm 3: Perform hunt stage

In order to search for adjacent grids, I used depth-first search,

shown in Algorithm 4.

function SearchAdj(row, col)

for grids adjacent to (row, col) do

numOfTurns ← numOfTurns + 1

if grid has been never guessed then

if the grid contains a part of a ship then

mark hit

if every ship sank then

return

else

SearchAdj(nextrow, nextcol)

end if

if every ship sank then

return

end if

 else

numOfTurns ← numOfTurns + 1

mark miss

end if

end if

end for

end function

Algorithm 4: Perform target stage

2.3. Probability Density Strategy

Occurrence Matrix. Probability density strategy works
based on an “occurrence matrix.” An occurrence matrix is a
matrix with the same size as the game board with numbers
of every possible ship configurations. Each element of the
matrix represents a grid with the number of an occurrence
of a ship. Of course, the occurrence matrix will change after
every turn or guess. For example, if a guess hits a ship, then

the grid that was guessed must be included in every possible

ship configuration for the succeeding calculations. If a guess

misses, then the grid must be eliminated for every possible
ship configuration.

Figure 3: Initial Occurrence Matrix

4

Figure 3 is the 10 × 10 occurrence matrix when the game
starts (i.e. the information of hit and miss is void). There are
30,093,975,536 total configurations of placing 5 ships that
have the size of 2, 3, 3, 4, 5 in a 10 × 10 board. As the color
gets closer to red the number is bigger, and as the color gets
closer to green, the number is smaller.

(c) (d)

(e) (f)

(a) (b)

Figure 4: Probability density strategy

Explanation. Once the algorithm calculates the occurrence
matrix, the algorithm will pick the grid with the highest
number of occurrences and will update the algorithm based
on if it was a hit or a miss. It would repeatedly build an
occurrence matrix and guess until every ship sinks. Picture
(a) in Figure 4 represents the initial configuration as well as
the occurrence matrix. As shown in (b), the algorithm picks
the grid with the biggest number in the occurrence matrix,
which happens to be a miss. Then, the algorithm calculates
the occurrence matrix based on this information and guesses
the grid with the highest number again (shown in (c)). Then, it
applies the information that the guess was a hit and calculates
the matrix again. This process is repeated as shown in (d),

(e), and (f). When a shot is missed, the grid turns to green,

which represents 0.

Naive Implementation. The real challenge in

implementing the probability density strategy is to implement

the occurrence matrix. Therefore, in this section and the next

section, the focus is on implementing the occurrence matrix.

Here are some initial variables that we need for the naive

implementation.

	– MainBoard[10][10] // 2D array that keeps track of ships

	– �ConditionBoard[10][10] // 2D array that shows 1 if

hit, 2 if missed, 0 if never guessed

	– �OccurrenceBoard[10][10] // 2D array that shows

the number of occurence of each grid in every possible

configurations(i.e. occurrence matrix)

In order to implement the occurrence matrix, I made a recursion

function Solver(int cur) that can call itself recursively

until every possible configuration is calculated. Note that cur

is the index of the ship(0 → size 2, 1 → size 3, 2 → size 3, 3 →
size 4, 4 → size 5) and tempBoard[10][10] is used to save

the information of MainBoard temporarily.

function Solver(Cur)

if Cur equals 5 then

check the MainBoard with ConditionBoard

if the information is consistent then

reflect this information on the OccurrenceBoard

else

return

end if

end if

tempBoard	 Mainboard

for every possible configuration of Curth ship do

if it doesn’t overlap with previous ship configurations then

update MainBoard

Solver(cur + 1)

MainBoard ← tempBoard

end if

end for

end function

Algorithm 5: Perform Solver that calculates the OccurrenceBoard in a naive way

5

Optimized Implementation. The naive implementation
takes a lot of time because it repeats things that can be
calculated before or after the recursion function. Since there
are 30,093,975,536 maximum ship configurations, time is
crucial to this algorithm.

In order to optimize the probability density strategy, the first
thing I did is to use a different coordinate system that can locate
a ship. This allowed me to use advanced techniques such as bit
masking. For example, for the naive implementation, I
expressed the location of the ship with the left uppermost
coordinate of a ship and the direction. For example, the three
ships in Figure 5 would be (0, 0) with direction 1, (0, 1) with
direction 1, and (0, 0) with direction 2. However, for the
optimized implementation, I simply used a number starting
from the left upper corner with horizontal configurations. When
the horizontal configurations were all numbered, I moved on to
the vertical ones. Therefore, in this case, the coordinates would
be 0, 1, and 12. Of course, the total number of configurations(total
locations) as well as the conversion to an actual coordinate
system differ by every ship with different size.

Figure 5: Coordinate System

If H = height of the board, W = width of the board, and S = size
of a ship, the total number of possible configurations would be:

totalConfigurations = W ∗ (H − S + 1) + H ∗ (W − S + 1)

Having locations of ships as simple numbers, I put them into
an array of Bitset with size 5 (total number of ships).

Figure 6: Bitset

If the Bitset in Figure 6 belongs to the ship with size 2, 1 in the
Bitset means that there can be a size 2 ship placed on location
number 0, 1, and 6. Likewise, it means that there cannot be a
size 2 ship on the location with a 0.

The main problems that take a lot of time for the naive
implementation and how I managed to optimize it is shown in
table 1. It is further clarified in algorithm 6.

Naive Implementation Optimized Implementation

Coordinate
System

Used Array[10][10] to
save the actual position of
every ship

Used Bitset[5] to save
whether there can be a ship
in a location for every ship →
State[5]

Calculating
overlapping
information

Had to place a ship on the
board to see if it was oc-
cupied by a previous ship

Used Bitset[5][TotalLo-
cation][5]* to calculate
all the possible locations that
ship “B” can be placed with
ship “A” being placed on
position “i” and up-dated the
Bitsets of the succeeding ships
→ Possible[5][totalConfigu-
rations][5]
*Possible[ship “A”][position
“i”][ship “B”]

Iterating through
possible loca-
tions

Had to iterate through
every possible configura-
tions even if it could not be
placed because there is a
ship placed previously

Used destructive bitscan*
to not look at the index of
locations that overlap with
previous ships
*Destructive bitscan is a
function which skips all the 0s
in the bitset and returns the
index of 1 and changes this
index to 0. Returns -1 when
there is no 1s left.

Comparing
with
ConditionBoard

Had to check if the 5 ship
configuration matches with
the information in Condi-
tionBoard after positioning
all 5 ships

(1) Saved the information
of hits and misses from the
ConditionBoard to State[5]
prior to the calculation

of the matrix

(2) Calculated the number of
hits that any index of location
contains and saved it prior to
the calculation of the matrix

→ NumHit[5][totalCon-
figurations]

(3) Took the remaining num-
ber of hits as an argument of
the Solver function and only
referred to the prior calcula-
tion made in (2) to calculate
the remaining number of hits

Adding infor-
mation to Oc-
curenceBoard

Had to add every informa-
tion of the MainBoard to
the OccurenceBoard if the
MainBoard’s information
was consis- tent with the
information of the Condi-
tionBoard

Utilized the property of a recur-
sive function: Returned 1 every
time the final configuration
was made and then added the
total numbers of configura-
tions to an external Array[5]
[TotalLocation]*.

→ NumCount[5][total-
Configurations]

Added the numbers in the
external array to the Occur-
renceBoard after running the
recursive function

*Let’s say that we want to
know the number of configu-
rations that include the ship
size 2 in location 0.

Then, we just need to refer to
NumCount[index of ship size
2][0].

Table 1: Problems of Naive Implementation and Solutions

6

Thus, here are the initial variables and how I changed the
recursive function.

	– �State[5] // Array of Bitset that keeps track of every ship
configurations

	– �Possible[5][totalConfigurations][5] // Array
of Bitset that saves information if a ship can be placed with
another ship placed in a certain location

	– �NumHit[5][totalConfigurations] // Array of Bitset that
saves information of number of Hits in the location of each ship

	– �NumCount[5][totalConfigurations] // Total Number
of configurations in the location in each ship

function Solver(Cur, RemainHit)

if Cur equals 5 then

if RemainHit equals 0 then

return 1  single successful 5 ship configuration made

else

return 0

end if

end if

tempState ← State

ret ← 0
while true do

i ← State[Cur].bitscan destructive()  performs destructive bitscan

if i equals to -1 then

break

end if

for every ship succeeding size Cur ship (nextShip) do

State[nextShip]&= Possible[Cur][i][nextShip]

end for

x ← Solver(Cur + 1, RemainHit - NumHit[Cur][i]) ret ← ret + x

NumCount[Cur][i] ← NumCount[Cur][i] + x State ← tempState

end while

return ret

end function

Algorithm 6: Perform Solver in a optimal way

Comparison. To evaluate the performance of the optimal
implementation, I compared the time for both naive and
optimal implementations that took to generate the initial
occurrence matrix with 5 ships. Note that the gap between
each implementation will further increase if we measure the
time it takes to finish an entire game (i.e. calculating many
occurrence matrices). As shown in table 2, for a 5 × 5 board,
the optimized solution was about 7 times faster than the naive
solution, and this value increases as the size of the board
increases. It turned out that the optimized implementation
calculated the initial occurrence matrix approximately 31 times
faster than the naive implementation for a 10 x 10 board.

5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10

Naive
Optimal

0.13 3.4 54.4 519.9 3632.9 19418.7

0.017 0.25 3.3 25.3 149.7 627.2

					 (units: seconds)

Table 2: Time Comparison between naive and optimal implementation

Graph 1: Time Comparison between naive and optimal
implementation

2.4. RESULTS

I ran 100 times for all three strategies and the results are
shown in table 3 as well as in graph 2.

Average Turns Minimum Turns Maximum Turns

Random 95.4 81 100

Hunt and Target 65.9 39 94

Probability Density 46.1 32 65

Table 3: Comparison between three strategies

*The x-axis of the graph is the range of the number of turns. The point on
each graph represents that there were games that took a number of turns in
the range of the corresponding values on the x-axis. For example, the point

that is between 5 and 10 turns has a value of 0, which means that there were
0 number of games that took between 5 and 10 turns to finish.

Graph 2: Comparison between three strategies

7

The random strategy, which I defined as bad attack, took
an average of 95.4 turns to finish a game. Moreover, it took
a minimum of 81 turns and a maximum of 100 turns. The
hunt and target strategy’s performance was substantially
good compared to the random strategy. It took an average of
65.9 turns with a minimum of 39 and maximum of 94 turns.
Lastly, the probability density strategy outweighed the hunt
and target strategy. It took only an average of 46.1 turns,
a minimum of 32, and a maximum of 65 turns. This data is
reflected on graph 2. While the scatter plot for probability
density graph is focused on the left side, the plot for the
random strategy is focused on the right side. The plots of
hunt and target strategy are concentrated in the middle.

3. “GOOD” DEFENSE AGAINST “GOOD” ATTACK

In this section, I created several models that assumed to be
“good” defense and played it on “good” attacks determined in
the previous section which are hunt and target, probability
density strategy.

3.1. DEFENSE AGAINST HUNT AND TARGET
STRATEGY

An interesting fact about the Hunt and Target strategy is that
if two or more ships are adjacent to each other, the hunt and
target strategy can identify all of these adjacent ships just by
initiating target stage a single time. Moreover, if a ship is
located on the edges of the board, the ship would be identified
more quickly because the computer cannot guess grids that
are outside of the board. For example, picture (a) in Figure 7
shows that a ship on the bottom left was identified in only 7
guesses because the algorithm does not look at grids that are
outside the board. If the left bottom ship was not located on
the edge, then the program would take 11 guesses to identify
the same ship, shown in (b). Moreover, it only takes 17 guesses
to identify the middle two ships in picture (c) when the two
ships are next to each other. However, if they are separated, it
takes a minimum of 22 guesses to identify both ships.

(a) (b)

(c) (d)

Figure 7: Ships located on edges and ships that are connected

Figure 8: Good Defense on Hunt and Target

Considering these two factors, I created a model shown in
figure 8 that has all ship separated as well as not located on
the edges to make the hunt and target strategy slower. After
10,000,000 iterations, I got the following result, as expected.

Average Minimum Maximum

Bad Defense 66.1 20 100

Good Defense 77.8 51 100

Table 4: Good and Bad Defense against Hunt and Target Strategy

Graph 3: Good and Bad Defense against Hunt and Target Strategy

8

While it took an average of 66.1 turns for the hunt and
target strategy to finish a game against bad defense, it took
approximately 12 more turns against my good defense.
Moreover, while the minimum number of turns were 20 turns
against bad defense, it turned out that the minimum was 51
for good defense, which is more significant because I iterated
for 10,000,000 times. Overall, my defense strategy made the
hunt and target strategy to struggle to sink all ships compared
to the bad defense randomly generated by a computer.

3.2. PROBABILITY DENSITY STRATEGY

To make a good defense strategy, I experimented with 6
different types of initial configurations. There are two big
factors for placing a ship, which are whether the ships
are placed adjacent to each other or not, and whether the
ships are placed on the middle of the board, placed on the
edges, or placed evenly. Therefore, I created six models and
experimented with them.

Placed adjacent to each other Not placed adjacent to each other

Placed evenly

53 turns 37 turns

Placed in the
middle

26 turns 51 turns

Placed on the
edges

35 turns 60 turns

Table 5: Six models for finding out Good defense against Probability Density strategy

9

Considering that the average number of turns the probability
density strategy took against random placement of ships was
46.1, I found that a good defense strategy is to place all ships
on the edges of the board without being adjacent to each
other, which took 60 turns. Note that unlike hunt and target
strategy, placing ships not adjacent to each other evenly on
the board is not a good strategy against probability density
(only took 37 turns).

4. CONCLUSION

Through implementing several attack strategies, it turned out
that hunt and target strategy and probability density strategy
were better strategies than the random strategy when playing
against bad defense(randomly placing) taking 30 and 50
fewer average guesses, respectively.

When implementing the probability density strategy, I
precomputed the information required for the calculation
as well as used bit optimization in order to minimize the
computing time. As a result, the algorithm was nearly 31
times faster in only calculating the initial occurrence matrix
compared to a naive implementation.

Finally, I proposed some good defense against the hunt and
target and probability density strategy and proved that it was
17.7%, 30.2% efficient, respectively.

Finding a mathematical optimal good defense strategy against
a probability density attack strategy would be an interesting
topic to study in the future. Furthermore, since the game of
battleship is a two player game, it would be a great challenge
to apply game theory to further explore optimal strategies on
both attack and defense.

REFERENCES

1.	 Justin Castillo Anthony Cardenas. Battleship 254, 2015. URL
https://github.com/natertater23/ BattleShip254.

2.	 Battleship. Datagenetics. URL http://datagenetics.com/blog/
december32011/index.html.

3.	 C. Liam Brown. Battleship probability calculator: Methodology.
URL https://cliambrown.com/battleship/methodology.php.

4.	 Jonathan Boyd Jacob Boyd. Battleship playing program utilizing
probability density functions, 2016.

5.	 Audinot Maxime, Bonnet Francois, and Viennot Simon. Optimal
strategies against a random opponent in battleship. The 19th

Game Programming Workshop, pages, 2014:67–74, 2014.

