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ABSTRACT

We created a synthetic undirected graph of disease diffusion network that expresses the disease infectee 
as a node and their relation to other infectees as an edge. To figure out the infectee who is influential the 
most in spreading the disease, we used various methods to compare each infectee›s influence across the 
network: degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, PageRank, 
and Katz centrality. After calculating each infectee›s centralities and PageRank in the diffusion network, we 
concluded that betweenness centrality is the ideal method for diffusion network since the similarity between 
the infectees with high betweenness centrality and the infectees whose substantial influence is intuitively 
noticed is high. Also, we discussed future work to get the most central nodes in a graph more accurately.

Finding Top-k Central Nodes in  
a Diffusion Network Using Various Methods 

In chapter II, methods for calculating centralities for this 
experiment were described with equations and examples. In 
chapter III, the experiment’s result is analyzed. Chapter IV 
provides a conclusion and proposes future works.

II. RELATED WORKS

There are methods to analyze the importance of a node across 
a network of a graph such as degree centrality, closeness 
centrality, betweenness centrality, eigenvector centrality, 
PageRank centrality, and so on[6],[7],[9]. In the following 
sections, these methods will be described with equations and 
examples.

Degree Centrality 

The degree centrality [1] ranks a node’s importance by the number 
of edges [1]. If a node has many edges that connect to other nodes, 
then the node has a high degree centrality. In contrast, if a node 
has a few edges, then the node has a low degree centrality.

In an undirected graph, the degree centrality Cd of node vi is defined as

Cd(νi)=di

(1.1)

In the equation above,di represents node vi’s the degree, or 
the number of adjacent edges.

There are three types of degree centrality in directed graphs: 
the in-degree centrality, the out-degree centrality, and both.

I. INTRODUCTION

A disease’s diffusion network is a graph that expresses 
infected people as nodes and routes of virus transmission as 
edges. The diffusion network is an effective way of showing 
the interactions between people that transmits the virus and 
which individual or group of people are the most influential 
in transmitting the virus. As mentioned above, each node in 
the diffusion network represents each individual, and the 
edges that connect the nodes show the route the virus took 
to infect one person from another. In other words, a node that 
has the most number of edges has the most number of routes 
that carry the node’s virus to others and is thus the most 
influential node in the diffusion networks.

It is important to use the diffusion network to find the most 
influential node since knowing how might the whereabouts 
and actions of the most influential infectee from the network 
have affected spreading the disease can be a key to the 
cessation of the disease’s current epidemic. Not only does 
taking an in-depth look at the diffusion network help to 
accelerate the process of fighting disease, but it can also 
function as a landmark that data scientists can begin with 
when another virus breaks out in the future, which set up a 
basis for this research project.

In this paper, we will use centrality [4] to find the most influential 
nodes. The number of nodes affected by a node is directly 
proportional to the node’s centrality score [5]. Thus, we need to 
find the node with the highest centrality score.
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Cd(νi)=di
in

(1.2)

Cd(νi)=di
out

(1.3)

Cd(νi)=di
in+ di

out

(1.4)

The in-degree centrality measures a node’s prominence, or 
how many other nodes are connected to the node. The out-
degree centrality measures a node’s gregariousness, or how 
many other nodes the node is connected to. Using both the 
in-degree and the out-degree centrality doesn’t take direction 
into account, which is the same as equation 1.1.

Normalization of Degree Centrality

<Fig 1 >

A node’s degree centrality does not measure the node’s 
importance in comparison to other nodes. To compare the 
degree centralities of nodes, the degree centrality values have 
to be normalized.

The degree centrality of node vi can be normalized:

Cd
norm(vi)=di/(n-1)

(1.5)

Also, maximum degree can be used to normalize  
the degree centrality:

Cd
max(vi)=di/(maxjdj)

(1.6)

Lastly, it is possible to normalize the degree centrality by the 
degree sum:

Cd
sum(vi)=di/(∑ j dj)=di/2|E| =di/2m

(1.7)

Example 1 - Consider Figure 1

In the case of the graph in figure 1, a node’s degree equals the 
number of edges that the node is connected to. For instance, 
the degrees of the nodes in the graph in figure 1 are:

j = 1: 2

j = 2: 3

j = 3: 1

j = 4: 3

j = 5: 1

j = 6: 1

In the graph in figure 1, n, the total number of nodes is 6. To 
normalize degree centrality, we need to divide a node’s degree 
centrality by n-1:

j = 1: 2/5

j = 2: 3/5

j = 3: 1/5

j = 4: 3/5

j = 5: 1/5

j = 6: 1/5 

Nodes v2 and v4 have the highest degree centrality. Thus, when 
we normalize the degree centrality by maximum degree, v2 
and v4 become 1 as maxjdj = 3.

Betweenness Centrality

Betweenness centrality [8] determines the node’s importance 
by measuring how many shortest paths between other nodes 
include the node.

Cb (vi)=∑s≠t≠vi  σst(vi)/σst

(2.1)

In the equation above, σst is the number of shortest paths 
between node s and node t, and σst(vi) is the number of shortest 
paths between node s and node t that includes node vi .

Betweenness centrality also needs to be normalized to be compared 
to other nodes across the network. To normalize betweenness 
centrality, the maximum value of Cb(vi) needs to be found. When 
Cb(vi) is its maximum, σst(vi), the number of every shortest path 
except for those that include vi as s or t, is equal to σst .

Cb(vi)=∑s≠t≠vi  σst(vi)/σst =∑s≠t≠vi 1=2 (n-1)/2=(n-1)(n-2)

(2.2)
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Example 2 - Consider Figure 1

Take node v2 in figure 1 as an instance. v2 is between nodes v1 
and v3 on the shortest path between v1 and v3. There is only 
one shortest path that connects v1 and v3, thus there is only 
one instance when v2 is a part of shortest path. The number of 
instances when v2 is a part of shortest path between v1 and v3 
is divided by the number of shortest path between v1 and v3. 
The same needs to be done for shortest paths between other 
combinations of two nodes and summed. Then, the summed 
number needs to be multiplied by 2 since one edge has two 
possible directions.

j = 1: 0

j = 2: 2×((1/1)+(1/1)+(1/1)+(1/1)+(1/1)+(1/1)+(1/1)+0+0) = 14

j = 3: 0

j = 4: 2×((1/1)+(1/1)+(1/1)+(1/1)+(1/1)+(1/1)+(1/1)+0+0) = 14

j = 5: 0

j = 6: 0

Closeness Centrality

Closeness centrality [3] measures how quickly a node can get 
to other nodes. In other words, a node with high closeness 
centrality is less in average shortest path length to other nodes.

Cc(vi)=1/(lvi)

(3.1)

In the equation above, Cc(vi) represents the closeness 
centrality of a node vi. lvi represents the average short-
est path length that connects vi to other nodes.

Example 3 - Consider Figure 1

Take node v1 in figure 1 as an instance. The length of shortest 
path between v1 and v2, between v1 and v3, between v1 and v4, 
between v1 and v5, and between v1 and v6 are 1, 2, 2, 3, and 3 
respectively. The average of these lengths is lvi. Dividing 1 by 
lvi results in the closeness centrality of the node v1.

j = 1: 1/((1+2+2+3+3)/5) = 0.45454545454

j = 2: 1/((1+1+1+2+2)/5) = 0.71428571428

j = 3: 1/((2+1+2+3+3)/5) = 0.45454545454

j = 4: 1/((2+1+2+1+1)/5) = 0.71428571428

j = 5: 1/((3+2+3+1+2)/5) = 0.45454545454

j = 6: 1/((3+2+3+1+2)/5) = 0.45454545454

Eigenvector Centrality

<Fig 2>

Eigenvector centrality puts more importance on how many 
influential nodes a node is connected to than on the length 
of the shortest path that connects the node to other nodes or 
the betweenness of the node. The equation below represents 
eigenvector centrality.

Ce(vi)=1/λ ∑n
j=1 Aj,iCe(vj)

(4.1)
In the equation, λ is a constant. The equation can be rewritten as:

λCe=ATCe

(4.2)
In undirected graph, A equals AT. Thus the equation above can 
be expressed as:

λCe=A Ce⇔(λ-A)Ce=0

(4.3)

Example 4 - Consider Figure 2

Ce is not 0, so we need to consider λ-A as 0. However, λ is a 
constant, while A is a matrix. Therefore, we need to multiply λ 
by an identity matrix I, and we get the equation below.

(A-λI)Ce=0

(4.4)

The adjacency matrix of the graph in figure 2 is:

v1 v2 v3 v4 v5

v1 0 1 1 1 1

v2 1 0 0 0 0

v3 1 0 0 0 0

v4 1 0 0 0 0

v5 1 0 0 0 0

<Table 1>
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Once the adjacency matrix is substituted to equation 4.4, we 
get the equations below.

(4.5)

As we calculate the determinant of A-λI, we can see that(-λ)5=0. 
Thus, λis 0, and A-λI equals the adjacency matrix. Assuming that 
Ce is [u1,u2,u3,u4,u5 ]T, we can replace A-λI with the adjacency 
matrix in equation n, which results in the equation below.

(4.6)

The equations above means that Ce equals 0, which means the 
eigenvector centrality of each node in the graph of figure 2 
equals zero. The eigenvector centrality of every node is the 
same because the node that has the most number of edges 
is v1, and every node in the graph is connected to v1. Since 
eigenvector centrality measures how many influential nodes a 
node is connected to, the eigenvector centralities for all of the 
nodes are the same.

While the eigenvector centrality isn’t useful in situations 
in which every node is connected to the most central node, 
PageRank [2], [10], and Katz centrality can distinguish the 
nodes with their features by using two constants, α and β:

Cp=αATD-1Cp+β1, CKatz=β(I-αAT)-1⋅1

(4.7)

Example 5   
The table 3 shows centralities of the nodes in the graph 
in figure 3 with various methods: degree centrality, 
betweenness centrality, closeness centrality, and Pag-
eRank. Consider the nodes in the First and Second col-
umn. v5, v6, v8, v11 in the two columns are nodes that 
are connected to a larger community of nodes, which 
increases these nodes, centrality.

First Second Third Fourth
 Degree 

Centrality
{v5, v8}  {v2, v3, v4,

 v6, v9, v11,
v14, v16}

 {v7, v12,
v18, v19}

 {v1, v10,
 v13, v15,

v17}
 Betweenness

Centrality
{v11} {v6} {v5} {v8}

 Closeness
Centrality

{v8} {v6} {v5, v11} {v9}

PageRank {v5} {v8} {v16} {v14}

<Table 2: Centralities of a graph in Fig 3>

<Fig 3 >

III. EXPERIMENT

The experiment was done on a computer of which the cpu is 
Intel(R) Core(™) i7-8750H and the ram is 16.0 GB.

Setting

The codes for this experiment were written in Python. A Python 
library called Networkx was also used for this experiment.

{node,edge}  {100, 130}, {200, 260}, {300, 390},
 {400, 520}, {500, 650}, {600, 780},
{700, 910}, {800, 1040}, {900, 1170}

methods degree centrality, closeness centrali-
ty, betweenness centrality, eigenvec-
tor centrality, katz centrality

<Table 3>

We used synthetic graphs with 100, 200, 300, 400, 500, 600, 700, 
800, and 900 nodes respectively. In each graph, the number of 
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total edges was determined by the equation G(n,e), e=1.3×n since 
doing so reveals top-k in the results of the various calculations 
in an ideal way. If the set of edges gets larger, the graph G won’t 
be able to take the feature of diffusion network of disease into 
account completely. In contrast, if E is too small, then the calculated 
centralities won’t be able to represent the nodes’ influence.

<Fig 4>

Analysis

The amount of time required to calculate each type of 
centrality increases as the number of nodes increases since 
there are more nodes to take into calculation. The degree 
centrality almost stays the same throughout all number of 
nodes because getting degree centrality is done by reading 
the number of edges a node has, not calculating a ton of data.

Calculating betweenness centrality took the most time since 
getting betweenness centrality follows getting every shortest 
path in the graph, which takes a lot of time. The time it takes 
to calculate betweenness centrality and the time it takes to 
calculate closeness centrality increases exponentially because 
the time complexity of both betweenness centrality and 
closeness centrality is O(n2)

IV.  CONCLUSION

Out of all the methods for calculating centrality, betweenness 
centrality suits this diffusion network case based on the result 
of the experiment. Even though betweenness centrality takes 
a lot of time to calculate, the similarity between the nodes 
whose substantial influence is intuitively noticed and the 
most central nodes based on betweenness centrality is high.

V. FUTURE WORKS

Although the similarity between the intuitively most 
influential nodes and the nodes that have high betweenness 
centrality is high, centralities cannot return top-k most 
accurately. To get top-k in a more accurate way, methods 
other than centralities calculation need to be incorporated: 
bridge detection and community detection. Bridge detection 
and community detection traces the most influential nodes in 
each community of nodes, which helps us figure out the nodes 
that are influential the most in spreading the disease within a 
group of people. In other words, we would be able to deal with 
suppress diffusion more effectively.
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