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1	 INTRODUCTION

As the digitalization of typing has become more common, 
there has been more of an opportunity to use keyboards, and 
inevitably, typos have also become more common as a result. 
However, there are many instances in the modern world of 
devices being able to correct these mistakes, as essentially any 
electronic device is capable of doing so. The algorithm that is 
responsible for this autocorrection most likely calculates the 
minimum edit distance (MED) between the typo and a known 
word and corrects the typo .

However, clearly the MED between two strings should not 
be the only factor to consider. Some additional factors that 
should be considered are the distance between two characters 
on a keyboard and common types of typos. Through 
the combination of these three factors, a more accurate 
autocorrect program can be made. 

Design of the Paper  

Section 2 discusses some traditional methods of calculating 
a metric for the MED between two strings, known as 
Levenshtein-Distance and its successor Damerau-Levenshtein 
Distance. 

Section 3 is about improving these metrics in a practical 
sense by considering keyboard distance, types of typos, and 
how these factors contribute to the MED between two strings.

Section 4 analyzes the accuracy of these factors and which 
ones should be given more weight when deciding the MED 
and thus which word the typo should be correct.

2	 TRADITIONAL METHODS OF CALCULATING 
THE MINIMUM EDIT DISTANCE

Minimum edit distance (MED) is defined as the minimum 
numbers of operations that are needed to transform one 
string into another. These operations include insertion, which 
is adding a character; deletion, which is deleting a character; 
and substitution, which is replacing a character with another. 
In some cases, substitution is counted as two separate 
operations, as a substitution is technically a combination of 
a deletion and insertion. The number of edits it takes to get 
from one string to another can also be called the cost; in other 
words, finding the MED can be thought of as finding the lowest 
cost to transform one string into another. There are two main 
approaches to finding the MED between two strings

2.1 The Naive Solution

As mentioned, there are three main operations when 
transforming one string into another. This so-called naive 
solution involves performing each operation on every single 
character within the string until the desired string is obtained. 
For example, suppose the string “aaa” is to be transformed into 
the string “abc”. A potential first step could be to insert, delete 
or substitute the first “a” in the initial string. Afterwards, the 
second step could involve inserting, deleting, or substituting 
a character from the three new strings. For shorter strings, 
this may not seem like a problematic approach; however, if 
the string was ten, twenty, or more than twenty characters 
long, then considering every single operation that could 
be done would take an extensive amount of time. For the 
aforementioned example, there are only 33=27 different 
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chains of operations to consider, which would not take long 
for a computer to find the MED. The time it would take for a 
computer to compute the MED via this method exponentially 
increases by a factor of three per additional character, which 
means that if a string was ten characters long, 310= 59,049 
different strings and their edit distance from the original string 
would have to be compared to each other. For this reason, an 
algorithm has been developed to effectively calculate the MED 
between two strings. 

2.2 The Effective Solution

  In order to find the MED between two strings effectively, the 
recursive function, , the edit distance between two strings of 
length and  has been defined as the following:

      

Figure 1: Minimum edit distance between strings X and Y 
where is the th character of string  and is the  

character of string 

It should be noted that this recursive function defines 
substitutions as operations of cost 2. This recursive function 
dramatically decreases the time needed to calculate the 
MED between two strings,  and For shorter strings,  can be 
computed easily; between the two strings “aaa” and “abc”, it 
is clear to see that the minimum edit distance is 4. However, if 
the strings were longer, say “equation” and “inequality”, then 
the answer is not so obvious. To compute the MED between 
two strings, a table can be used and the aforementioned 
recursive function can be applied to this table.

2.3 Example Using the Recursive Function

For this example, the strings “equation” and “inequality” will 
be used. The characters will be put into a table as follows:

n 8
o 7
i 6
t 5
a 4
u 3
q 2
e 1
# 0 1 2 3 4 5 6 7 8 9 10

# i n e q u a l i t y

In this table, “#” denotes an empty string, and the numbers 
represent the edit distance between the intersecting strings. 
For example, the intersection of the row with “#” and the 
column with “y” represents the MED between an empty string 
and the word “inequality”, which would be 10. The table can 
then be filled out according to the formula, filling in each box 
at a time.

n 8 7 6 7 8 7 6 7 6 7 8
o 7 6 7 8 7 6 5 6 5 6 7
i 6 5 6 7 6 5 4 5 4 5 6
t 5 6 7 6 5 4 3 4 5 4 5
a 4 5 6 5 4 3 2 3 4 5 6
u 3 4 5 4 3 2 3 4 5 6 7
q 2 3 4 3 2 3 4 5 6 7 8
e 1 2 3 2 3 4 5 6 7 8 9
# 0 1 2 3 4 5 6 7 8 9 10

# i n e q u a l i t y

As shown, if substitutions were to have a cost of two, the MED 
between the words “equation” and “inequality” is 8. This 
method is much more efficient than considering 38 (not 310 
because 2 insertions/deletions are necessary to transform 
one into another) different edit distances and comparing 
them to find the smallest one. 

2.4 Levenshtein Distance (LD)

One of the primary ways to calculate the MED between 
two strings is via the Levenshtein Distance. This method to 
calculate the MED was named after a mathematician named 
Vladimir Levenshtein. The edits that can be made on a string 
are the ones mentioned in the previous section: insertions, 
deletions, and substitutions. However, substitutions are 
considered to have a cost of 1 with the Levenshtein Distance 
metric. The LD of two strings, a and b, with lengths i and j 
respectively can be defined by leva, b(i, j), which is defined as 
the following:

 

Figure 2: Recursive formula of Levenshtein Distance

It should be noted that this recursive function is very similar to 
the previously defined D(i, j), but instead of D(i, j) describing 
substitutions as having a cost of 0 or 2, this function describes 
substitutions as having cost of 0 or 1. The subscript next to the 
1 in the scenario describing substitutions is a condition that 
states that the cost of a substitution is 1 if the i-th character of 
string a is not equal to the j-th character of string b.
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2.5	 Damerau-Levenshtein Distance (DLD)

Although the LD metric of MED between two strings is 
effective, there is a slight flaw with the algorithm. Consider 
the word “background”. A possible misspelling of this word 
could be “backrgound” if the person typing were to make a 
mistake. However, the minimum edit distance between the 
strings “background” and “backrgound” would be 2, as two 
substitutions would have to be made, despite the minor 
mistake of switching two letters of an otherwise correctly 
typed word. This is the main advantage that Damerau-
Levenshtein Distance has over the classic Levenshtein 
Distance. The DLD metric of MED takes into consideration 
another type of operation that can be performed between two 
strings: transposition, or swapping two adjacent characters 
with each other. Thus, to calculate the DLD between two 
strings, the recursive function da, b(i, j), where strings a and b 
have lengths i and j respectively, is defined as follows:

 

Figure 3: Recursive formula of Damerau-Levenshtein 
Distance

The fifth scenario of the function represents transposition, as 
a[i] denotes the i-th character of the string a. This is clearly 
the same as the previously defined leva, b(i, j), except for 
the fact that there is an additional function that represents 
transposition. This allows computers to calculate the MED 
between two strings in a more realistic matter, as people are 
prone to making the mistake switching two characters within 
a word while typing.

3.	 OUR METHODS

In order to create an efficient autocorrect algorithm, the 
smallest DLD should not be the only factor that contributes 
to how a word is corrected. A typo may be close to a word in 
terms of DLD, but it may not be the intended word of the person 
typing. In other words, simply considering DLD is unrealistic, 
as there are other factors to take into consideration, which 
will be discussed in the following sections.

3.1.	 Different Types of Common Typos

According to Roger Mitton’s English Spelling and the 
Computer, many of the typos made by humans today can be 
characterized by one or more of the four types of errors that 
the Damerau-Levenshtein Distance describes. The frequency 

of each error can be seen in the table below. By taking these 
statistics into consideration, an autocorrect algorithm can be 
made more realistic. The cost of an edit can be adjusted based 
on how frequently it is made based on this table. For example, 
if a letter was omitted, which translates to an insertion, the 
cost may be reduced to 0.5 because of how common it is, as 
opposed to transposition, which may be given an increased 
cost of 1.5 because of how rare it is compared to an insertion. 
Even within these four types of errors, there are specific cases 
of each that have to be taken into consideration as well. 

3.1.1	 Omissions

For omissions (typos that require an insertion), Mitton 
presents the observation that “keys struck by the little fingers 
are more likely to be omitted”, so some edits on the QWERTY 
layout such as an insertion of the letter A or Q should be 
given an even further reduced cost because of how frequently 
it happens within insertion errors. Other observations 
regarding omission errors include the fact that the first letter 
of words is rarely omitted and that letters that are repeated 
within a word are also likely to be omitted. 

3.1.2	 Substitutions

Similar patterns have also been observed and presented by 
Mitton within substitutions. The figure below shows the keys 
that have been frequently typed in the place of the letter D. As 
stated by Mitton, “The amount of shading in a box represents 
the number of times that that key was typed in place of “d.” It 
can be seen that it is very likely that someone types S, E, F or 
C instead of D because of how close they are on the keyboard. 
The reason why K is also frequently typed in the place of D 
is because it is typed by the same finger on a different hand. 
Therefore, while letters that are far away on a keyboard 
should be given a higher cost because of how unlikely it is that 
they will be typed, letters that are typed by the same finger on 
a different hand should not be penalized as heavily. 

3.1.3	 Transpositions

The final type of error is transpositions. Mitton states that 
“eighty per cent or more [errors] involve keys typed with 
different hands.” It is also stated that shorter words such as 
“the” and “that” are especially affected, since the letters T and 
H are typed with different hands. The reason being is because 
these shorter words are typed rather quickly, and as a result, 
the person typing may be tempted to type both letters at the 
same time, which commonly translates to the two letters 
being transposed. Additionally, Mitton states that the videos of 
transposition errors demonstrate that the second finger usually 
gets to the key faster than the first finger can get to its key.
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3.2	 Our model

Using this information, a realistic autocorrect algorithm can 
be formulated by making uncommon mistakes cost more 
than their common counterparts. It can be recalled that the 
traditional Damerau-Levenshtein Distance calls for every edit 
- insertion, deletion, substitution, and transposition - to have 
a cost of one. However, based on statistics given by Mitton and 
the proposition before, the edits that need to be penalized most 
heavily from greatest to least are transposition, substitution, 
deletion, and insertion. Within these edits, however, the cost of 
each edit should increase based on how far away the intended 
key is on a traditional QWERTY keyboard. For example, the 
string “hpt” is more likely to be intended as “hot” rather than 
“hat”. If the distance between characters on a keyboard were 
not considered, then the editing cost between “hpt” and “hat” 
or “hot” would be the same, which would therefore make the 
algorithm inaccurate. Of course, this cost would be adjusted 
according to the information presented by Mitton above. An 
instance of this is presented in English Spelling and the Computer, 
where the letter K should not be penalized as heavily as typing 
the letter P when the intention was to type the letter D. 

3.3	 Genetic Algorithm

Finding the optimal cost of each edit through brute force 
would be ridiculously time-consuming, as there are simply 
too many combinations of values to test. This is where the 
genetic algorithm comes into play. A genetic algorithm is 
essentially a search heuristic that is inspired by, as its name 
suggests, genetics and the theory of evolution. There are five 
main phases that determine a genetic algorithm.

The first of these phases is the initialization of a population. 
Each member of the population has a specific set of parameters 
or genes that constitute its genotype. For the purpose of this 
project, a member of the population would be a set of costs for 
each edit, with each cost corresponding to a gene.

After the population has been initialized, the next step is to 
assess the fitness of the population. This is essentially where 
each member of the population is evaluated to see how well 
the parameters solve the problem at hand. The fitness is 
then quantified using a function of some sort. To determine 
the fitness of a set of four costs, the percentage of words of 
a corpus that have been properly corrected can be used to 
assess the fitness of each member of the population.

Once the fitness of each member has been calculated, the two 
members of the population that have the highest fitness score are 
selected. This would correspond to selecting the two sets of costs 
that would result in the highest percentage of words corrected.

Afterwards, the most important phase, the crossover phase, is 
when the two fittest members’ genes are swapped. This occurs 
by picking a random “crossover point” within the genes and 
switching the genes past or before that crossover point, making 
two “children” with characteristics of the “parents.” In the case 
of this project, the genes that would be exchanged between two 
sets would be their costs. For example, if there were two sets of 
costs, {1, 2, 3, 4} and {5, 6, 7, 8}, and the crossover point were 
to be between the second and third costs, then the two new 
members would be {1, 2, 7, 8} and {5, 6, 3, 4}.

Finally, there is the mutation phase. This is when the genes of 
a child are given a chance of developing a random gene that 
is not inherited from either of the parents. Going back to the 
example given above, a mutation of one of the children may 
be {1, 2, 9, 8} instead of {1, 2, 7, 8}. This essentially offers a 
constant variation as the population grows, since eventually 
the majority of the expanded population would be the fittest 
of the initial population. 

4.	 EXPERIMENTS

Figure 4: Accuracy of the autocorrect algorithm  
using genetic algorithms

The above graph demonstrates how the accuracy of the 
autocorrect algorithm evolved with each generation, where 
“KeyDist” refers to the algorithm that calculated the physical 
distance between two keys on a keyboard. Surprisingly, 
accounting for the distance between two keys harmed the 
accuracy of the autocorrect algorithm, as the difference 
between the two accuracies by the twentieth generation is 
about 1.8 percent. 

Generation(s) a b c d Accuracy 
(%)

12-13 0.4 1 0.9 2.2 78.8254

14-16 0.5 1 0.8 2.5 79.1156

17-20 0.5 1 0.8 2 79.6105

Table 1:  Last three distinct accuracies that the autocorrect 
algorithm produced with KeyDist
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This table shows the last three distinct accuracies that the 
autocorrect algorithm produced with the KeyDist algorithm 
included. “a” corresponds to the cost of transposition, “b” to 
insertion, “c” to deletion, and “d” to substitution. It can be 
seen that the cost transposition is kept the lowest; the costs 
of insertion and deletion are relatively similar, but deletion 
is slightly lower; and the cost of substitution is much higher 
than the rest of the edits. 

Generation(s) a b c d Accuracy 

(%)

14-15 0.8 1.2 1 1.2 80.9985

16 0.8 1 0.8 1 81.3105

17-20 0.5 1 0.8 1 81.4289

Table 2:  Last three distinct accuracies that the autocorrect 
algorithm produced without KeyDist

This table shows the same statistics as the previous table but 
without the use of the KeyDist algorithm. Although similar 
trends can be seen among the majority of the costs, the cost of 
substitution is seen to be substantially lower without the use 
of KeyDist. 

From the data above that depicts the accuracy of the 
autocorrect algorithm with and without the consideration of 
the physical distance between keys, several conclusions can 
be drawn.

Firstly, it can be seen that the most frequent edit is surprisingly 
transposition; then deletion; and finally, depending on the 
inclusion of the KeyDist algorithm or not, insertion then 
substitution. The deletions can be attributed to unintentionally 
pressing a key while typing a word. A possible reason that 
KeyDist may have resulted in lower accuracies is because of 
the lack of repeated typos in the corpus, which means that 
there were not a lot of typos in which KeyDist was relevant 
enough to consider. 

5	 CONCLUSION

Using what started as brute force and evolved into the genetic 
algorithm, it was found that the most efficient set of costs for 
transposition, insertion, deletion, and substitution were 0.5, 
1, 0.8, and 1.2, respectively.

Blindly testing different combinations of costs for each 
edit took an absurd amount of time — about a month of 
running code if each trial took the same amount of time — to 
determine the most accurate ones. Thus, a genetic algorithm 
was implemented to not only look for a more accurate set of 
costs, but to look for that set in a shorter amount of time.

With these costs that were generated from the genetic 
algorithm, the accuracy of the autocorrect algorithm turned 
out to be about 81.4%.

It turns out that considering the physical distance between 
keys on a keyboard led to more inaccuracy than ignoring it. 
This may be attributed to the types of typos that were present 
on the corpus used to test this autocorrect algorithm. 

It would be interesting to look into some different factors that 
contribute to inaccurate typing that were not discussed and 
try to implement those into the algorithm. Clearly, there is 
exists a much more efficient algorithm, as almost all mobile 
devices and computers are able to correct typos in an instant.
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