
1

1	 INTRODUCTION

As the digitalization of typing has become more common,
there has been more of an opportunity to use keyboards, and
inevitably, typos have also become more common as a result.
However, there are many instances in the modern world of
devices being able to correct these mistakes, as essentially any
electronic device is capable of doing so. The algorithm that is
responsible for this autocorrection most likely calculates the
minimum edit distance (MED) between the typo and a known
word and corrects the typo .

However, clearly the MED between two strings should not
be the only factor to consider. Some additional factors that
should be considered are the distance between two characters
on a keyboard and common types of typos. Through
the combination of these three factors, a more accurate
autocorrect program can be made.

Design of the Paper

Section 2 discusses some traditional methods of calculating
a metric for the MED between two strings, known as
Levenshtein-Distance and its successor Damerau-Levenshtein
Distance.

Section 3 is about improving these metrics in a practical
sense by considering keyboard distance, types of typos, and
how these factors contribute to the MED between two strings.

Section 4 analyzes the accuracy of these factors and which
ones should be given more weight when deciding the MED
and thus which word the typo should be correct.

2	 TRADITIONAL METHODS OF CALCULATING
THE MINIMUM EDIT DISTANCE

Minimum edit distance (MED) is defined as the minimum
numbers of operations that are needed to transform one
string into another. These operations include insertion, which
is adding a character; deletion, which is deleting a character;
and substitution, which is replacing a character with another.
In some cases, substitution is counted as two separate
operations, as a substitution is technically a combination of
a deletion and insertion. The number of edits it takes to get
from one string to another can also be called the cost; in other
words, finding the MED can be thought of as finding the lowest
cost to transform one string into another. There are two main
approaches to finding the MED between two strings

2.1 The Naive Solution

As mentioned, there are three main operations when
transforming one string into another. This so-called naive
solution involves performing each operation on every single
character within the string until the desired string is obtained.
For example, suppose the string “aaa” is to be transformed into
the string “abc”. A potential first step could be to insert, delete
or substitute the first “a” in the initial string. Afterwards, the
second step could involve inserting, deleting, or substituting
a character from the three new strings. For shorter strings,
this may not seem like a problematic approach; however, if
the string was ten, twenty, or more than twenty characters
long, then considering every single operation that could
be done would take an extensive amount of time. For the
aforementioned example, there are only 33=27 different

Sol Kim

Farragut High School

ABSTRACT

Autocorrect is used widely in digital typing to, as the name suggests, automatically correct mistyped words.
The purpose of this paper is to investigate what factors should contribute to how a mistyped word is
corrected and how significant each factor is in the correction process. First, the aspects that could contribute
to a more efficient autocorrect algorithm include how different a mistyped word is from the intended word,
how far away a mistyped character is from the correct one, and how the typo is classified. These factors
were then quantified and integrated into the autocorrect algorithm to see how accurately a corpus of words
could be corrected. Finally, these quantities that were assigned were altered and experimented with to
inspect how much they contributed to the accuracy of the algorithm.

An Efficient Autocorrect Algorithm Using Genetic Algorithm

2

chains of operations to consider, which would not take long
for a computer to find the MED. The time it would take for a
computer to compute the MED via this method exponentially
increases by a factor of three per additional character, which
means that if a string was ten characters long, 310= 59,049
different strings and their edit distance from the original string
would have to be compared to each other. For this reason, an
algorithm has been developed to effectively calculate the MED
between two strings.

2.2 The Effective Solution

 In order to find the MED between two strings effectively, the
recursive function, , the edit distance between two strings of
length and has been defined as the following:

Figure 1: Minimum edit distance between strings X and Y
where is the th character of string and is the

character of string

It should be noted that this recursive function defines
substitutions as operations of cost 2. This recursive function
dramatically decreases the time needed to calculate the
MED between two strings, and For shorter strings, can be
computed easily; between the two strings “aaa” and “abc”, it
is clear to see that the minimum edit distance is 4. However, if
the strings were longer, say “equation” and “inequality”, then
the answer is not so obvious. To compute the MED between
two strings, a table can be used and the aforementioned
recursive function can be applied to this table.

2.3 Example Using the Recursive Function

For this example, the strings “equation” and “inequality” will
be used. The characters will be put into a table as follows:

n 8
o 7
i 6
t 5
a 4
u 3
q 2
e 1
0 1 2 3 4 5 6 7 8 9 10

i n e q u a l i t y

In this table, “#” denotes an empty string, and the numbers
represent the edit distance between the intersecting strings.
For example, the intersection of the row with “#” and the
column with “y” represents the MED between an empty string
and the word “inequality”, which would be 10. The table can
then be filled out according to the formula, filling in each box
at a time.

n 8 7 6 7 8 7 6 7 6 7 8
o 7 6 7 8 7 6 5 6 5 6 7
i 6 5 6 7 6 5 4 5 4 5 6
t 5 6 7 6 5 4 3 4 5 4 5
a 4 5 6 5 4 3 2 3 4 5 6
u 3 4 5 4 3 2 3 4 5 6 7
q 2 3 4 3 2 3 4 5 6 7 8
e 1 2 3 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9 10

i n e q u a l i t y

As shown, if substitutions were to have a cost of two, the MED
between the words “equation” and “inequality” is 8. This
method is much more efficient than considering 38 (not 310
because 2 insertions/deletions are necessary to transform
one into another) different edit distances and comparing
them to find the smallest one.

2.4 Levenshtein Distance (LD)

One of the primary ways to calculate the MED between
two strings is via the Levenshtein Distance. This method to
calculate the MED was named after a mathematician named
Vladimir Levenshtein. The edits that can be made on a string
are the ones mentioned in the previous section: insertions,
deletions, and substitutions. However, substitutions are
considered to have a cost of 1 with the Levenshtein Distance
metric. The LD of two strings, a and b, with lengths i and j
respectively can be defined by leva, b(i, j), which is defined as
the following:

Figure 2: Recursive formula of Levenshtein Distance

It should be noted that this recursive function is very similar to
the previously defined D(i, j), but instead of D(i, j) describing
substitutions as having a cost of 0 or 2, this function describes
substitutions as having cost of 0 or 1. The subscript next to the
1 in the scenario describing substitutions is a condition that
states that the cost of a substitution is 1 if the i-th character of
string a is not equal to the j-th character of string b.

3

2.5	 Damerau-Levenshtein Distance (DLD)

Although the LD metric of MED between two strings is
effective, there is a slight flaw with the algorithm. Consider
the word “background”. A possible misspelling of this word
could be “backrgound” if the person typing were to make a
mistake. However, the minimum edit distance between the
strings “background” and “backrgound” would be 2, as two
substitutions would have to be made, despite the minor
mistake of switching two letters of an otherwise correctly
typed word. This is the main advantage that Damerau-
Levenshtein Distance has over the classic Levenshtein
Distance. The DLD metric of MED takes into consideration
another type of operation that can be performed between two
strings: transposition, or swapping two adjacent characters
with each other. Thus, to calculate the DLD between two
strings, the recursive function da, b(i, j), where strings a and b
have lengths i and j respectively, is defined as follows:

Figure 3: Recursive formula of Damerau-Levenshtein
Distance

The fifth scenario of the function represents transposition, as
a[i] denotes the i-th character of the string a. This is clearly
the same as the previously defined leva, b(i, j), except for
the fact that there is an additional function that represents
transposition. This allows computers to calculate the MED
between two strings in a more realistic matter, as people are
prone to making the mistake switching two characters within
a word while typing.

3.	 OUR METHODS

In order to create an efficient autocorrect algorithm, the
smallest DLD should not be the only factor that contributes
to how a word is corrected. A typo may be close to a word in
terms of DLD, but it may not be the intended word of the person
typing. In other words, simply considering DLD is unrealistic,
as there are other factors to take into consideration, which
will be discussed in the following sections.

3.1.	 Different Types of Common Typos

According to Roger Mitton’s English Spelling and the
Computer, many of the typos made by humans today can be
characterized by one or more of the four types of errors that
the Damerau-Levenshtein Distance describes. The frequency

of each error can be seen in the table below. By taking these
statistics into consideration, an autocorrect algorithm can be
made more realistic. The cost of an edit can be adjusted based
on how frequently it is made based on this table. For example,
if a letter was omitted, which translates to an insertion, the
cost may be reduced to 0.5 because of how common it is, as
opposed to transposition, which may be given an increased
cost of 1.5 because of how rare it is compared to an insertion.
Even within these four types of errors, there are specific cases
of each that have to be taken into consideration as well.

3.1.1	 Omissions

For omissions (typos that require an insertion), Mitton
presents the observation that “keys struck by the little fingers
are more likely to be omitted”, so some edits on the QWERTY
layout such as an insertion of the letter A or Q should be
given an even further reduced cost because of how frequently
it happens within insertion errors. Other observations
regarding omission errors include the fact that the first letter
of words is rarely omitted and that letters that are repeated
within a word are also likely to be omitted.

3.1.2	 Substitutions

Similar patterns have also been observed and presented by
Mitton within substitutions. The figure below shows the keys
that have been frequently typed in the place of the letter D. As
stated by Mitton, “The amount of shading in a box represents
the number of times that that key was typed in place of “d.” It
can be seen that it is very likely that someone types S, E, F or
C instead of D because of how close they are on the keyboard.
The reason why K is also frequently typed in the place of D
is because it is typed by the same finger on a different hand.
Therefore, while letters that are far away on a keyboard
should be given a higher cost because of how unlikely it is that
they will be typed, letters that are typed by the same finger on
a different hand should not be penalized as heavily.

3.1.3	 Transpositions

The final type of error is transpositions. Mitton states that
“eighty per cent or more [errors] involve keys typed with
different hands.” It is also stated that shorter words such as
“the” and “that” are especially affected, since the letters T and
H are typed with different hands. The reason being is because
these shorter words are typed rather quickly, and as a result,
the person typing may be tempted to type both letters at the
same time, which commonly translates to the two letters
being transposed. Additionally, Mitton states that the videos of
transposition errors demonstrate that the second finger usually
gets to the key faster than the first finger can get to its key.

4

3.2	 Our model

Using this information, a realistic autocorrect algorithm can
be formulated by making uncommon mistakes cost more
than their common counterparts. It can be recalled that the
traditional Damerau-Levenshtein Distance calls for every edit
- insertion, deletion, substitution, and transposition - to have
a cost of one. However, based on statistics given by Mitton and
the proposition before, the edits that need to be penalized most
heavily from greatest to least are transposition, substitution,
deletion, and insertion. Within these edits, however, the cost of
each edit should increase based on how far away the intended
key is on a traditional QWERTY keyboard. For example, the
string “hpt” is more likely to be intended as “hot” rather than
“hat”. If the distance between characters on a keyboard were
not considered, then the editing cost between “hpt” and “hat”
or “hot” would be the same, which would therefore make the
algorithm inaccurate. Of course, this cost would be adjusted
according to the information presented by Mitton above. An
instance of this is presented in English Spelling and the Computer,
where the letter K should not be penalized as heavily as typing
the letter P when the intention was to type the letter D.

3.3	 Genetic Algorithm

Finding the optimal cost of each edit through brute force
would be ridiculously time-consuming, as there are simply
too many combinations of values to test. This is where the
genetic algorithm comes into play. A genetic algorithm is
essentially a search heuristic that is inspired by, as its name
suggests, genetics and the theory of evolution. There are five
main phases that determine a genetic algorithm.

The first of these phases is the initialization of a population.
Each member of the population has a specific set of parameters
or genes that constitute its genotype. For the purpose of this
project, a member of the population would be a set of costs for
each edit, with each cost corresponding to a gene.

After the population has been initialized, the next step is to
assess the fitness of the population. This is essentially where
each member of the population is evaluated to see how well
the parameters solve the problem at hand. The fitness is
then quantified using a function of some sort. To determine
the fitness of a set of four costs, the percentage of words of
a corpus that have been properly corrected can be used to
assess the fitness of each member of the population.

Once the fitness of each member has been calculated, the two
members of the population that have the highest fitness score are
selected. This would correspond to selecting the two sets of costs
that would result in the highest percentage of words corrected.

Afterwards, the most important phase, the crossover phase, is
when the two fittest members’ genes are swapped. This occurs
by picking a random “crossover point” within the genes and
switching the genes past or before that crossover point, making
two “children” with characteristics of the “parents.” In the case
of this project, the genes that would be exchanged between two
sets would be their costs. For example, if there were two sets of
costs, {1, 2, 3, 4} and {5, 6, 7, 8}, and the crossover point were
to be between the second and third costs, then the two new
members would be {1, 2, 7, 8} and {5, 6, 3, 4}.

Finally, there is the mutation phase. This is when the genes of
a child are given a chance of developing a random gene that
is not inherited from either of the parents. Going back to the
example given above, a mutation of one of the children may
be {1, 2, 9, 8} instead of {1, 2, 7, 8}. This essentially offers a
constant variation as the population grows, since eventually
the majority of the expanded population would be the fittest
of the initial population.

4.	 EXPERIMENTS

Figure 4: Accuracy of the autocorrect algorithm
using genetic algorithms

The above graph demonstrates how the accuracy of the
autocorrect algorithm evolved with each generation, where
“KeyDist” refers to the algorithm that calculated the physical
distance between two keys on a keyboard. Surprisingly,
accounting for the distance between two keys harmed the
accuracy of the autocorrect algorithm, as the difference
between the two accuracies by the twentieth generation is
about 1.8 percent.

Generation(s) a b c d Accuracy
(%)

12-13 0.4 1 0.9 2.2 78.8254

14-16 0.5 1 0.8 2.5 79.1156

17-20 0.5 1 0.8 2 79.6105

Table 1: Last three distinct accuracies that the autocorrect
algorithm produced with KeyDist

5

This table shows the last three distinct accuracies that the
autocorrect algorithm produced with the KeyDist algorithm
included. “a” corresponds to the cost of transposition, “b” to
insertion, “c” to deletion, and “d” to substitution. It can be
seen that the cost transposition is kept the lowest; the costs
of insertion and deletion are relatively similar, but deletion
is slightly lower; and the cost of substitution is much higher
than the rest of the edits.

Generation(s) a b c d Accuracy

(%)

14-15 0.8 1.2 1 1.2 80.9985

16 0.8 1 0.8 1 81.3105

17-20 0.5 1 0.8 1 81.4289

Table 2: Last three distinct accuracies that the autocorrect
algorithm produced without KeyDist

This table shows the same statistics as the previous table but
without the use of the KeyDist algorithm. Although similar
trends can be seen among the majority of the costs, the cost of
substitution is seen to be substantially lower without the use
of KeyDist.

From the data above that depicts the accuracy of the
autocorrect algorithm with and without the consideration of
the physical distance between keys, several conclusions can
be drawn.

Firstly, it can be seen that the most frequent edit is surprisingly
transposition; then deletion; and finally, depending on the
inclusion of the KeyDist algorithm or not, insertion then
substitution. The deletions can be attributed to unintentionally
pressing a key while typing a word. A possible reason that
KeyDist may have resulted in lower accuracies is because of
the lack of repeated typos in the corpus, which means that
there were not a lot of typos in which KeyDist was relevant
enough to consider.

5	 CONCLUSION

Using what started as brute force and evolved into the genetic
algorithm, it was found that the most efficient set of costs for
transposition, insertion, deletion, and substitution were 0.5,
1, 0.8, and 1.2, respectively.

Blindly testing different combinations of costs for each
edit took an absurd amount of time — about a month of
running code if each trial took the same amount of time — to
determine the most accurate ones. Thus, a genetic algorithm
was implemented to not only look for a more accurate set of
costs, but to look for that set in a shorter amount of time.

With these costs that were generated from the genetic
algorithm, the accuracy of the autocorrect algorithm turned
out to be about 81.4%.

It turns out that considering the physical distance between
keys on a keyboard led to more inaccuracy than ignoring it.
This may be attributed to the types of typos that were present
on the corpus used to test this autocorrect algorithm.

It would be interesting to look into some different factors that
contribute to inaccurate typing that were not discussed and
try to implement those into the algorithm. Clearly, there is
exists a much more efficient algorithm, as almost all mobile
devices and computers are able to correct typos in an instant.

REFERENCES

1.	 Mitton, R. (1996). Slips and Typos. In English spelling and the

computer. London: Longman.

2.	 Minimum Edit Distance. Stanford. URL https://web.stanford.
edu/class/cs124/lec/med.pdf

3.	 Damerau–Levenshtein distance. (2020, September 13). URL https://
en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_
distance

4.	 Mallawaarachchi, V. (2020, March 01). Introduction to Genetic
Algorithms URL https://towardsdatascience.com/introduction-
to-genetic-algorithms-including-example-code-e396e98d8bf3

