
An Overview of the McEliece Cryptosystem with Mathematica
Implementation
George Leibowitz

ABSTRACT
Data security is a rising topic that is becoming increasingly important with the integration of various “smart”
devices into our lives. The ideas of data security in the most basic and fundamental underlying form lead me to
exploring the subject of data encryption. After learning the basics of data security through research, I was led to
the McEliece Cryptosystem. Although various types of cryptosystems exist, the McEliece Cryptosystem was one
that was not as utilized as others in the field, which was quite interesting for me, as I saw great potential in the
system. Although the patterns that come from this system are finite due to the design of the system, the number
of patterns is overwhelming. I decided to start this research project to replicate the McEliece Cryptosystem using
Mathematica so that I could alter the system's inputs and parameters and really explore how the security was
created. Through the coding process, which involved plenty of troubleshooting and revisions, I could deeply get
to understand the logic behind the system. The McEliece Cryptosystem could also be important in the future for
quantum cryptography, a field that will expand when quantum computing has become mainstream.

1. INTRODUCTION
This paper discusses the fundamental concepts of the

McEliece Cryptosystem; an asymmetric encryption algorithm
developed in 1978 by Robert McEliece and the first such
scheme to use randomization in the encryption process. The
algorithm has never gained much acceptance in the
cryptographic community. As the system is immune to attacks
using Shor’s algorithm and measuring cost states using Fourier
sampling, the McEliece Cryptosystem is a valid candidate.
The algorithm is based on the hardness of decoding a general
linear code, which is known to be NP hard. The original
algorithm uses binary Goppa codes (subfield codes of
geometric Goppa codes of a genus-0 curve over finite fields of
characteristic 2); these codes are easy to decode, thanks to the
efficient Patterson Algorithm. [3] The public key is derived
from the private key by disguising the selected code as a
general linear code. For this, the code's generator matrix G is
perturbed by two randomly selected invertible matrices S and
P. Variants of this cryptosystem exist, using different types of
codes. Most of them were proven less secure, as structural
decoding broke them. On the other hand, Yongge Wang
proposed a secure McEliece scheme based on any efficient
linear code; the hardness of Wang's variants depend on the
NP-hardness of decoding random linear code. [1]
The McEliece Cryptosystem with Goppa codes has resisted
cryptanalysis until now. The most effective attacks known use
information-set decoding algorithms. A 2008 paper by Daniel
J Bernstein, Tanja Lange, and Christiane Peters describes both
an attack and a fix. [2] Another paper by

christiane Peters shows that for quantum computing, key sizes
must be increased by a factor of four due to improvements in
information set decoding. [3]
The McEliece Cryptosystem has some advantages over, for
example, RSA. The encryption and decryption are faster (for
comparative benchmarks see the eBATS benchmarking project
atbench.cr.yp.to). For a long time, it was thought that McEliece
could not be used to produce signatures. However, a signature
scheme can be constructed based on the Niederreiter scheme,
the dual variant of the McEliece scheme. Another advantage of
the cryptosystem was mentioned before; theoretically it seems to
have no vulnerabilities to quantum computing.
One of the main disadvantages of the McEliece Cryptosystem is
that the private and public keys are large matrices. For a
standard selection of parameters, the public key is 512 kilobits
long, leading to the rare use in practice. One exceptional case
that uses the McEliece Cryptosystem for encryption is the
Freenet-like application Entropy. Cryptography is a very
important subject, as the World Wide Web, consisting of
millions of interconnected computers and databases, allows
nearly instantaneous communication and transfer of
information all around the world. Cryptography makes secure
web sites and all types of secure electronic transmissions
possible. The contributions of cryptography allow people to
conduct business and communications without worries of
deception and theft. Every day, millions of people interact over
the World Wide Web, with connections such as social media or
e-commerce. The exponential increase of information on the
World Wide Web has led to an increased reliance on
cryptography.

Recently, a very large issue of privacy was raised when
Apple went against the FBI’s decision to force Apple to
unlock the phone of a suspect of the San Bernardino
murder case. [4] Apple denied, responding with the
statement, “All that information needs to be protected
from hackers and criminals who want to access it, steal it,
and use it without our knowledge or permission.”
Undeniably, a lot of personal information has been
uploaded to individual accounts all around the world, and
the importance of keeping this type of information secure
has become an essential challenge for the world today.

2. PRELIMINARIES

The original purpose of coding theory is to ensure that the
transmission of information is correct. When the messages
are sent in binary, some of the bits may become “flipped”
to the opposite value (a zero to one or one to zero).
Additional bits can be attached to each message so that
the receiver can detect and correct the errors that occur.
The main problem in this situation is to find efficient
ways to attach additional information to messages so that
the addressee can correct as many errors as possible.
Definition 1.. Let V={[b1, b2, …, bn]| |bi∈{0,1}}, where
addition in V is a component-wise addition modulo 2
(⊕operation). V is called binary linear code if the next
conditions hold

Figure 1. 1st fragment of Mathematica code

Figure 2. The result of executing the 1st fragment of Mathematica code
Exercise 2
Check, that V ={b0, b1,.., b7} where b0=00000,
b1= 00111, b2= 01010, b3= 01101, b4= 10010,
b5= 10101, b6= 11000, b7= 11111 is linear binary code
with help of Mathematica.

Solution 2:
To do this one can use the code generated in example 2
(see fig. 3)

.

Figure 3. MATHEMATICA code for solution of the exercise 2

After executing this code we see the same results as on fig.2.

Definition 2. Linear code is called [n,k] binary code if the set V
in def. 1 includes n -dimensional binary vectors and

the number of these vectors is equal to 2k
Definition 3. The weight of a vector is the number of ones it
contains.

For example, the weight of 1101001 is equal to 4.

1. V includes trivial sequence.
2. For any pairs bi bj their bitwise sum bi Å 	bj also

belongs to V. Let’s recall that 0Å0=0;	0Å1=1;
0Å1=1;	1Å1=0	[3]. Example 1 Let’s b1=10011,

b2=01010, then

Remark,	that	this	action	can	be	performed	with	help	of	
Mathematica	(see	[4]):	BitXor[{1,0,0,1,1},{0,1,0,1,0}]	
{1,1,0,0,1}

Exercise	1	

Find	b4Åb3	if	b3=00101;	b4=10110.	
Solution 1: 	b4Åb3=10010.	

Example	2	
Generate V ={ b0, b1,.., b7} where b0=00000;
b5=11001, b6=01111, b7=11100 and b1,.., b4 are as in
example 1 and exercise 1. Let’s check that V is binary
linear code with help of Mathematica.bi

To do this we organize a cycle for find sum bkÅ bj for all
pairs {k¹j} . (see fig.1).
The result of this code performing shows us that V is
actually binary linear code (see fig.2).

2
Review ½Volume 4, Issue 1 28

D efinition 4. The minimum weight d of a code is the
smallest weight of any nonzero (not all zeros) code
word in the code. By term “code word” we mean a
vector from linear code space.
 The minimum weight can be computed with help
of Mathematica and similar programs. When the
minimum weight is known, it is listed as the third
parameter of the code. I.e. we have a

deal with [n,k,d] –code, which can correct t=
errors. Hence the minimum weight d tells us
how good the code is.

3. HAMMING CODE
Let’s consider the generator

matrix 𝐺𝐺 = 1 1 0 1 0 0 1
1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0

,corresponding to [7,4,3] code (see [7]). This code
consists of 24=16 code words (possible messages).

To encode information word, it is sufficient
to find corresponding linear combination of G lines. In
other words, if = a1…ak - information word, then
corresponding code word is equal to c=a G. Let

a= (a1,a2,a3) then multiplication by GT is
performed according to the rule:

Solution 3:
Let’s generate multiplication rule similar to (1) first:

A parity check matrix can be easily recovered using

It has a special (canonical) form

𝐻𝐻 = 𝑃𝑃 —| 𝐸𝐸

G1 =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

.
Definition 5. Let	 introduce	a	field	 as	 set	of	
mathematical	 objects,	which	 can	add,	subtract,	
multiply	and	divide	[6].	

	The	 simplest	 field	 consists	 of	 two	elements	
– 0	 and	 1	with	 two	 base	operations	addition
modulo	2	Å	(see	above)	and	multiplication	modulo	2	
Ä	(see	below):	

0Ä0=0;	0Ä1=0;	1Ä0=0;	1Ä1=0.	
Definition 6. Alphabet,	 consisting	of	 two	symbols	0	
and	1	with	 two	operations	Å	 and	Ä	 is	called	Galois	
field	 of	two	elements	(binary	Galois	field)	and	is	
denoted	as GF(2).

One	can	represent	an	[n,k]-code	by	exactly	k	
linear	 independent	 vectors	 with	 elements	 in GF(2).	
These	k	vectors	are	written	as	the	rows	of	a	𝑘𝑘 × 	
matrix,	 which	 is	 called	 a	 generator	 matrix .	 The	
generator	matrix	makes	 it	 possible	 to	 “generate”	 all	
of	the	vectors	in	the	code	by	taking	all	possible	linear	
combinations	of	these	matrix	rows,	hence	its	name.	

So	 when	 the	 code	 word	 is	 received,	 assuming	 no	 errors	
have	 occurred,	 we	 can	 read	 the	original	message	from	
the	7th,	3rd,	5th,	and	6th	positions	(see	yellow	highlighting	
in	(1)).	
Example	3.	
Let’s	find	code	word	for	information	word a=(1100),	using	
(1).	Substituting	a1		by	1, a2		by	1, 𝑎𝑎 ê	and	𝑎𝑎 ‘		by	0	and	we	
get	c=	(1⨁1⨁0	1⨁1⨁0	1	1⨁0⨁0	0	0	1) =(0	0	1	1	0	0	1).	

Exercise	3		
Find	code	word	for	information	word a =(1100)	and	
generator	matrix	

3
Review of Computational Science and Engineering ½Volume 4, Issue 1 29

where PT is transposed matrix P and E is unit
matrix, which has ones on the main diagonal and
zeros in the other places. E.g., for the generator
G1 we have

𝑃𝑃 =

1 1 0
1 0 1
0 1 1
1 1 1

, so 𝑃𝑃 — =

1 1 0 1
1 0 1 1
0 1 1 1

 and

H =
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

. (3)

If parity check matrix has no canonical form, then one
can reduce it to (2) by elementary transformations over its
rows modulo 2.
Example 4
Let’s find parity check matrix for generator matrix G
(roman numerals indicate the rows of the matrix):

.	Hence	the	parity	check	matrix	for	the	Hamming	code	

G		is	H =
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

..		

Example 5
Let’s check, that h i×gj = 0 mod 2 where h i is the row of H
and gj is the row of G for 𝑖𝑖 = 𝑗𝑗 = 1.

H2.

𝐻𝐻 ∙ 𝒄𝒄𝒕𝒕 =
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

∙

0
0
1
1
1
0
1

=
1⨁1⨁1

1⨁1
1⨁1⨁1

=
1
0
1

.

To check this result we will organize a simple loop
(Fig.4) Exercise 6
Compute the syndromes of the vector b =[0 1 1 0 1 0 1]

a. By Hand
b. With help of Mathematica

We	can	highlight	the	nonzero	components,	being	
at	the	same	positions	of	h1	and	g1:	
g1=	(1	1	0	1	0	0	1),	h1=(0	1	1	1	1		0	0).	Dot	
product	h 1×g1=	1⨁1=0	(mod	2).	
Exercise	5	
Check,	that	h i×gj=0	mod	2	for	i=2,	j=3,	where	gi	 is	a	
row	of	matrix	G2	and	h j	is	a	row	of	matrix	

Solution	5	
There	are	no	nonzero	components	being	at	the	
same	positions	of	h2	and	g3:	
h2=	(0	1	1	1	0	1	0),	g3=(1	0	0	0	1	0	1).	Hence,	h
2×g3=0	(mod	2).	

4. SYNDROME DECODING

DDeeffiinniittiioonn	 	 99..	 	 If	 we	 take	 any	 vector	
vÎV	 and	 multiply	 � ¡ (where	 � 	 is	 the	
transposition	of	the	vector	𝑣𝑣)	on	the	left	by	
the	parity	check	matrix	then	we	get	a	vectors		
called	the	syndrome	 of	v.	It	indicates	whether	
there	are	any	errors	in	the	code	word.	

Example	6	
Let’s	compute	the	syndrome	ss	of		the	vector	
𝒄𝒄 =[0	0	1	1	1	0	1]	which	was	received	by	
Bob,,		using	Hamming	parity	check	matrix	
with	help	of	Mathematica.	

4
Review of Computational Science and Engineering ½Volume 30

Figure 4. Calculating a syndrome

Solution 6

a. 𝑯𝑯 ∙ 𝒃𝒃 𝒕𝒕 =
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟏𝟏
𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟏𝟏
𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏

∙

𝟎𝟎
𝟏𝟏
𝟏𝟏
𝟎𝟎
𝟏𝟏

=
𝟏𝟏⨁𝟏𝟏

𝟏𝟏⨁𝟏𝟏⨁𝟏𝟏
𝟏𝟏⨁𝟏𝟏⨁𝟏𝟏

=
𝟎𝟎

𝟏𝟏
1

Figure 5. Calculating a syndrome

Suppose that initial message was c =[0 0 1 1 0 0 1], i.e.

there is the single error at the 5th position. One can

represent 𝒄𝒄 as a sum 𝒄𝒄 =𝒄𝒄 + 𝒆𝒆 , where e =[0 0 0 0 1
0 0]. Then the result is:

because the dot product (mod 2) of a code phrase with each
row of the parity check matrix
is 0. So the syndrome of the received message is the
same as that of its corresponding error vector.

5. MCELIECE CRYPTOSYSTEM

Let C be an [n,k]- linear code with a fast
decoding algorithm that can correct t or fewer errors. Let
G be a generator matrix for C. To create the
disguise, let S be a k × k invertible matrix (the
scrambler) and let P be an n × n permutation matrix
(i.e., having a single 1 in each row and column and
0's everywhere else). The matrix

G' = SGP
, is made public while S , G and P are kept secret by Bob.
For Alice to send a message to Bob, she blocks her message
into binary vectors of length k . If x is one such block,
she randomly constructs a binary n -vector of weight t (that
is, she randomly places t 1's in a zero vector of length n), call
it e and then sends to Bob the vector

y = xG' + e.
Eve, upon intercepting this message, would have to find the
nearest codeword to y of the code

generated by G'. This would involve calculating the
syndrome of y and comparing it to the

syndromes of all the error vectors of weight t.

As there are of these error vectors, good choices 𝑛𝑛
𝑡𝑡

of n and t will make this computation infeasible. Bob, on

the other hand, would calculate1

y’=yP-1 = (xG' + e)P-1 = xSG + eP-1 = xSG + e' , (4)

where e ' is a vector of weight t (since P-1 is also a
permutation matrix). Bob now applies the fast decoding
algorithm to strip off the error vector e' and get the code
word (xS)G . The vector xS can now be obtained by

multiplying by G-1 on the right. Finally, Bob gets x by
multiplying xS on the right by S-1.
Example 7.
Suppose that Alice wishes send the message x=(1 1 0 1),
using

 𝐺𝐺
=

1 1 0 1 0 0 1
1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0

as Hamming generator
matrix and vector e with
weight 1.

Assuming e =(0 0 0 0 0 1 0).

On other hand Bob chooses
the scrambler matrix 𝑆𝑆 =

1 1 0 1
1 0 0 1
0 1 1 1
1 1 0 0

𝟎𝟎
𝟏𝟏

b. Using the same code, we have

5
Review of Computational Science and Engineering ½Volume 4, Issue 1 31

and permutation matrix 𝑃𝑃 =

0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

.

To calculate public generator matrix we will use
Mathematica (see fig.5).

Figure 6. Calculating a public generator matrix in Mathematica

The result is matrix G’=

0 0 0 1 1 1 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
1 0 0 0 1 0 1

.

Next step is computing y= xG' + e:

y = (1 1 0 1 1 1 0) is a coding message, which Alice
send to Bob.
Upon receiving y, Bob first compute P-1 and multiply it on
the left by y . Applying Mathematica, we get y’=yP-1 = (1
1 0 1 0 1 1) (see fig.6).

Figure 7. Calculating P-1 and y’ in Mathematica

Then we calculate a syndrome of y’, using definition 9
(see also example 6). Since we have parity check
matrix for G’,

 (see exercise 4), one can easily compute s’=y’*(H’)T
with help of Mathematica (see below).

To identify this result we should generate a table of
syndromes. It is not difficult using Mathematica:

Figure 8. The table of syndromes

Finally, x= (1 0 0 0)×

1 1 0 1
1 1 0 0
0 1 1 1
1 0 0 1

=(1 1 0 1).

As we see, the result is correct.

Exercise 7
Reconstruct encryption- decryption process for the
message x=(1 0 1 1), assuming e =(0 0 0 0 1 0 0) with
the same generator matrix and another scrambler matrix

1 1 0 1 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1

Hence	error	occurs	in	6th	position.	Now	Bob	can	correct	
the	word	y’	and	get	a	word	

y’’=y’-	e4=(1	1	0	1	0	0	1).	Because	of	special	choice	of	G	
(see	comments	after	(1))	he	reads	the	original	message	
from	the	7th,	3rd,	5th,	and	6th	positions,	i.e.	 xS=(1	0	0	0).	
The	last	step	is	obtaining	x	through	multiplying	by	matrix	
S-1:	

6
Review of Computational Science and Engineering ½Volume 4, Issue 1 32

𝑆𝑆 =
1 1 0 1
1 1 0 0
0 0 1 1
1 1 0 1

and
permutation
matrix 𝑃𝑃 =

0 1 0 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

Solution 7

11.. Calculating public generator matrix

22.. Computing coding message y= xG' + e:

33.. Calculate y’ =yP-1

4. Computing syndrome of y’, using the same parity
check matrix H1:

This is the message, sent by Alice.

6. CONCLUSION

This research paper about the McEliece Cryptosystem gave
me an idea of how my data could be better secured in the
future. Generating the key and authentication process was
simple in form but complicated in decoding. However, I
was successfully able to recreate the encryption system
using Mathematica and delineate the methods of
encryption and decryption.

In addition to learning about the mathematics behind the
McEliece Cryptosystem, the process of exploration not only
taught me how to use Mathematica but also how to
structure my research. Exploring a way for us to keep our
data safe from hackers has been a very valuable experience
for me, as data security is one of the hottest recent topics.
Small efforts made by individuals such as myself can
protect much of our personal data, rather than relying on
other services to protect our data for us.

The topic of cryptography has always been the matter of
how information could be securely stored secretly to
prevent hackers from accessing the information and
possibly causing harm. The method of encryption that one
puts on his/her information is quite an important matter as
it decides how easily the hackers are able to access the
information at all. The fast developing information
technology industry has brought up increasingly tough
hackers and encryption software, bringing concerns to
the public. The fast developing hacking industry has
also caused developers to come up with more secure
and complicated encryption systems.

In order to make the decryption more complicated, longer
keys must be implemented. The dawn of quantum
computing will make this especially important. When
quantum computers directly employ the quantum
mechanical phenomena to perform the operation of data,
with magnitudes greater processing speed, they will be able
to break many current encryption systems with simple brute
force attacks. Coming up with ways to stay safe from these
brute force attacks is a pressing concern in the
encryption community, and I would love to be able to
contribute to helping solve this problem in the future.

In the meantime, I’d like to further study other well-known
encryption systems like AES, RSA, elliptic curve, Triple
DES, and Blowfish. Each of these systems employs very
unique methods of encryption and decryption, with pros
and cons for each one. With the variety, I’d like to learn
about all the different approaches so that in the future, I
can better understand what makes a successful encryption
system. If possible, I would like to be part of developing a
unique encryption system of the future.

and find correspondent error at the table of syndromes
(see fig. 7). Here we see, that the

error occurs in 8th position.
5. Correcting y’ and recover y’’.

Similar to the example, we get a word
y’’=y’- e8=(0 1 1 1 1 0 0). Because of special choice of
G (see comments after (1)) he read the original

message from the 7th, 3rd, 5th, and 6th positions,
i.e. xS=(0 1 1 0).
6. Obtaining x thro multiplying previous vector by the

matrix S-1:

Review of Computational Science and Engineering ½Volume 4, Issue 1 33

For [k = j + 1, k ≤ 7, k ++,
BB = BitXor[B

[
j] , B[k]] ;

Print ["j =", j, " k =", k, " ", MemberQ [MM, BB]]]]
(* Organize a loop for checking

necessary properties
*
)

j=1 k=2 True
j=1 k=3 True
j=1 k=4 True
j=1 k=5 True
j=1 k=6 True
j=1 k=7 True
j=2 k=3 True
j=2 k=4 True
j=2 k=5 True
j=2 k=6 True
j=2 k=7 True
j=3 k=4 True
j=3 k=5 True
j=3 k=6 True
j=3 k=7 True
j=4 k=5 True
j=4 k=6 True
j=4 k=7 True

7

REFERENCES
Wang, Yongge (2015). Random Linear Code Based Public
Key Encryption Scheme RLCE, URL:
https://eprint.iacr.org/2015/298

Bernstein, Daniel J., Tanja Lange, Christiane Peters (2008),
Attacking and Defending the McEliece
Cryptosystem, URL: https://cr.yp.to/codes/mceliece-20080807.pdf

Peters, Christiane. Information set-decoding for linears
codes over F² ,
URL: https://eprint.iacr.org/2009/589.pdf

Cook, Tim. A Message to Our Customers.
URL: http://www.apple.com/customer-letter/
S.Au, C. Eubanks-Turner, J. Everson. The McEliece
Cryptosystem.
URL: http://www.math.unl.edu/~s-jeverso2/McElieceProject.pdf
Yunghsiang S. Han. Introduction to Finite Fields
URL: http://web.ntpu.edu.tw/~yshan/algebra.pdf
Dipperstein, Michael. Hamming(7,4) Code Discussion and
Implementation
URL: http://michael.dipperstein.com/hamming/
Hamming(7,4). URL: https://en.wikipedia.org/wiki/
Hamming(7,4) Matrix Algebra Tutorial
URL: http://stattrek.com/tutorials/matrix-algebra-tutorial.aspx
McEliece Cryptosystem URL: https://en.wikipedia.org/wiki/
McEliece_cryptosystem Hands-on Start to Mathematica
URL: https://www.wolfram.com/broadcast/screencasts/handsonstart/

APPENDIX
Mathematica Encryption Code
For [j = 1, j ≤ 6, j++,

For [k = j + 1, k ≤ 7, k++, BB = BitXor[B[j],
B[k]];

Print[SubsetQ[M, BB]]]];

ClearAll[B]

B[1] = {1, 0, 0, 1, 1}; B[2] = {0, 1, 0,
1, 0}; B[3] = {1, 1, 0, 0, 1}; B[4] = {0,
0, 1, 0, 1}; B[5] = {1, 0, 1, 1, 0}; B[6]
= {0, 1, 1, 1, 1};

B[7] = {1, 1, 1, 0, 0}; (* Prepare binary
sequences *)

M = {B[1], B[2], B[3], B[4], B[5], B[6], B[7]} (*
Prepare set of sequences *)

{{1, 0, 0, 1, 1}, {0, 1, 0, 1, 0}, {1, 1, 0, 0,
1},
{0, 0, 1, 0, 1}, {1, 0, 1, 1, 0}, {0, 1, 1, 1, 1},
{1, 1, 1, 0, 0}}

For [j = 1, j ≤ 6, j++,

For [k = j + 1, k ≤ 7, k
++,

BB = BitXor[B[j], B[k]];
Print["j=", j, " k=", k, " ", MemberQ[M, BB]]]]
(* Organize a loop for checking necessary
properties *)

j=1 k=2
True

j=1 k=3 True
j=1 k=4 True
j=1 k=5 True
j=1 k=6 True
j=1 k=7 True
j=2 k=3 True
j=2 k=4 True
j=2 k=5 True
j=2 k=6 True
j=2 k=7 True
j=3 k=4 True
j=3 k=5 True
j=3 k=6 True
j=3 k=7 True
j=4 k=5 True
j=4 k=6 True
j=4 k=7 True
j=5 k=6 True
j=5 k=7 True
j=6 k=7 True

BitXor[B[1], B[2]]
{1, 1, 0, 0, 1}

MemberQ[M, {1, 1, 0, 0, 1}]
True

B[1] = {0, 0, 1, 1, 1};
B[2] = {0, 1, 0, 1, 0};
B[3] = {0, 1, 1, 0, 1};
B[4] = {1, 0, 0, 1, 0};
B[5] = {1, 0, 1, 0, 1};
B[6] = {1, 1, 0, 0, 0};

B[7] = {1, 1, 1, 1, 1}; MM = {B[1], B[2],
B[3], B[4], B[5], B[6], B[7]} (* Prepare
binary sequences *)
{{0, 0, 1, 1, 1}, {0, 1, 0, 1, 0},
{0, 1, 1, 0, 1}, {1, 0, 0, 1, 0},
{1, 0, 1, 0, 1}, {1, 1, 0, 0, 0},
{1, 1, 1, 1, 1}}

For [j = 1, j ≤ 6, j++,

Review of Computational Science and Engineering ½Volume 4, 34
8

BB = BitXor[B[j], B[k]];
Print["j=", j, " k=", k, " ",
MemberQ[MM, BB]]]]
(* Organize a loop for checking
necessary properties *)

j=1 k=2 True
j=1 k=3 True
j=1 k=4 True
j=1 k=5 True
j=1 k=6 True
j=1 k=7 True
j=2 k=3 True
j=2 k=4 True
j=2 k=5 True
j=2 k=6 True
j=2 k=7 True
j=3 k=4 True
j=3 k=5 True
j=3 k=6 True
j=3 k=7 True
j=4 k=5 True
j=4 k=6 True
j=4 k=7 True

j=5 k=6 True
j=5 k=7 True
j=6 k=7 True

MATHEMATICA DECRYPTION CODE

H =
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟏𝟏 𝟏𝟏
𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟏𝟏 𝟏𝟏
𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏

(* Hamming parity check matrix *)
{{0, 0, 0, 1, 1, 1, 1}, {0, 1, 1, 0, 0,
1, 1}, {1, 0, 1, 0, 1, 0, 1}}

e = {0, 0, 1, 1, 1, 0, 1} (* vector c *)

{0, 0, 1, 1, 1, 0, 1}

c = {0, 0, 0, 0, 0, 0, 0}; cc = {0, 0,
0};

For [i = 1, i ≤ 3, i++, d = 0;
(* loops for calculating of dot product
H.c *)

For [j = 1, j ≤ 7, j++;
 c[[j]] = H[[i, j]] * e[[j]],

d = BitXor[d, c[[j]]]];
cc[[i]] = d]
cc (* result *)
{1, 0, 1}

b = {0, 1, 1, 0, 1, 0, 1};
k = {0, 0, 0, 0, 0, 0, 0};
For [i = 1, i ≤ 3, i++, d = 0;
(* loops for calculating of dot product
H.c *)

For [j = 1, j ≤ 7, j++;

 k[[j]] = H[[i, j]] * b[[j]],

d = BitXor[d, k[[j]]]]; cc[[i]] = d]

cc

{0, 1, 1}

𝑃𝑃 = 	

0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

;

𝐺𝐺 = 	

1 1 0 1 0 0 1
1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0

;

𝑆𝑆 = 	

1 1 0 1
1 0 0 1
0 1 1 1
1 1 0 0

;

R1 = Mod[S.G.P, 2]; MatrixForm[R1]

0 0 0 1 1 1 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
1 0 0 0 1 0 1

e = {0, 0, 0, 0, 0, 1, 0};
x = {1, 1, 0, 1};
y = Mod[Mod[x.R1, 2] + e, 2] {1, 1, 0, 1,
1, 1, 0}

PP = MatrixForm[Inverse[P]]

9
Review of Computational Science and Engineering ½Volume 4, Issue 1 35

e={1, 0, 0, 0, 0, 0, 0} s={1, 0, 1}
e={0, 1, 0, 0, 0, 0, 0} s={1, 1, 0}
e={0, 0, 1, 0, 0, 0, 0} s={0, 1, 1}
e={0, 0, 0, 1, 0, 0, 0} s={1, 1, 1}
e={0, 0, 0, 0, 1, 0, 0} s={1, 0, 0}
e={0, 0, 0, 0, 0, 1, 0} s={0, 1, 0}
e={0, 0, 0, 0, 0, 0, 1} s={0, 0, 1}

MatrixForm[Mod[Inverse[S], 2]](* S^{-1} *)

1 1 0 1
1 1 0 0
0 1 1 1
1 0 0 1

𝑃𝑃1 = 	

0 1 0 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

;

𝑆𝑆1 =

1 1 0 1
1 0 0 1
0 1 1 1
1 1 0 0

;

1 0 0 1 1 1 0
0 1 0 0 1 1 0
1 0 1 0 0 1 0
1 0 0 0 1 0 1

x = {1, 0, 1, 1}; e5 = {0, 0, 0, 0, 1,
0, 0}; y = Mod[x.R2 + e5, 2] {1, 0, 1,
1, 1, 0, 1}

bMcEllice#2.n

P1I = Inverse[P1]; y1 = y.P1I
{0, 1, 1, 1, 1, 0, 1}

2

syndrome *) Mod[yy1.H1 21.H1T,
{0, 0, 1}

x1 = {0, 1, 1, 0}; S1I =
Mod[Inverse[S1], 2]; Mod[x1.S1I, 2]
{1, 0, 1, 1}

	Blank Page
	Blank Page
	Untitled

