
Using Neural Networks for Translation Tasks
Fang Chan

1. INTRODUCTION

Software translation from one language to
another has experienced significant advances in recent
years. The opportunities that are provided by quality,
error free translation are enormous. These potential
opportunities for machine translation range from
making books written in English available to German
speaking customers to providing mission critical
software systems, such as medical systems, available to
any doctor in the world.

Because of the advantages machine translation
would provide, exploration of different translation
models continue. Likewise, the predominant industry
paradigms are not yet error free (Goldberg, 2015). As
such, machine translation is an incredibly exciting area
of research with far reaching consequences.

Other important areas of research for machine
translation abound. Are we interested in translating
spoken word? Written text? A document? Additionally,
a language may have words with multiple meanings, or
may literally mean something in another language that
does not have the required context (such as a
colloquialism). Adequate machine translation needs to
account for all of these pitfalls.

There are several ways to write a machine
translation program. One could, obviously, write a
program with guidelines provided by a bilingual
speaker. Unfortunately, the domain would be
immense. It would be impossible to write software that
would take into account every possible rule of
translation for each word, each context of a word, each
context of a phrase, etc.

One of the more successful methods from
recent years for machine translation has been the use
of learning or training models. That is, “teaching” a
computer to correctly recognize proper translation.
These methods have advanced machine translation
greatly, and they will be the focus for discussion.

1

 This paper will discuss the current dominant
paradigms of machine translation, including
statistical machine translation and the recurrent
neural network encoder-decoder approach. There are
advantages and disadvantages to both. Additionally,
we will summarize and discuss recent work proposed
by Kyunghyun Cho (2015) regarding a potential
advancement in the use of the RNN Encoder-
Decoder approach.

2. Issues with current paradigms of
 Machine translation

Statistical Machine Translation

Revisiting our example of a potential
machine translator from earlier, what could we do
differently? Well, one common technique is to
program a machine to take some text in one
language and the same text in another language so it
can “learn” which words map to other words.

The statistical aspect comes in with mapping
words to other words. Using Bayesian calculations,
probabilities are assigned to word pairings. Why do
we use statistics? The answer is because a sentence in
one language doesn’t have a single translation in
another language. It can be translated into multiple
different words or sentences. As such, we use
probabilities to represent the likelihood that a
sentence in one language is the likely translation of
the sentence in the original language (Brown, 1990).

The likelihood that an output word
adequately represents the same word from the
original language is referred to as the “log
likelihood”. Once we’ve provided the statistical
machine translator with a set of input and output
translations, the machine can start to make
inferences about novel data and provide us with
probabilities that reflect the log likelihood that the
outputs are accurately translated (Brown, 2003).

Analysis of Applied Mathematics ½Volume 10

2

 There are several drawbacks to this type of
system, however.
First, errors are difficult to discover and fix. Related to
this problem, SMT systems are very good at providing
understandable translations that disguise errors during
the translation process. Additionally, when word order
matters, SMT systems aren’t as accurate. SMT
translations between similar western languages are
much more successful than translating between a
western language and Chinese, for example. Finally,
it’s difficult for SMT to take into account specific
contextual clues regarding a metaphor in one language
and correctly translate it into an understandable
phrase in the output language (Brown, 1990).

3. Neural Machine Translation and the RNN
Encoder-Decoder Approach to Machine
Translation

Both IBM and Google have utilized neural
networks to great success. Google, specifically, has
been a pioneer in the use of a neural network to
increase the speed and accuracy of language translation
(see Mikolov, 2013 and Sutskever, 2014). More
recently, natural language processing has been
advancing with hybrid neural networks and SMT
approaches. Cho has extensively detailed this newer
paradigm in a 2014 paper.

Before we can get into neural machine
translation, however, we must discuss what a neural
network is.

A neural network is, essentially, a computer
system that is designed to function similarly to the
human brain’s system of neurons. Information is
stored and computed in nodes and is propagated to
other nodes with a system of edges, or connections to
other nodes (neurons) (Sutskever et al. 2014). The
internal nodes are considered “hidden”. These nodes
are assigned probability weights based on Gaussian
distributions. Input is “forward-propagated” through
the hidden layers to produce output that is closer to
the expected output (Goldberg, 2015).

At its most basic operation level, there are two
visible sets of neurons. One set represents the input
neurons and the second set represents the output
neurons (Goldberg, 2015). The network itself is
considered “hidden”, a black box where the system of
internal processing neurons manage the data to
produce outputs.

The motivation behind developing a system
this way is that the machine teaches itself based on
the data it is provided. There is no dependency, like
with an SMT, on the functions the machine is
provided in its programming

A Recurrent Neural Network, or RNN, is a
system that maintains an internal, hidden state. This
is in contrast with a typical feed-forward neural
network which computes the system’s state from
scratch at every node. RNNs utilize information
sequentially which is why they make for good
machine translation architectures. Later neuron
processing is dependent on what previous neurons
have calculated allowing for inputs of arbitrary
length. This is the main advantage of designing a
machine translation system with an RNN - an input
can be of variable size in relation to the output. The
variable input is compressed to a fixed-length vector
for processing (Cho, 2014).

Here is an excellent graphic demonstrating
RNN computation. The variable x represents a given
time step through the network, s is each hidden state,
o is the output passed to later neurons, and U, V and
W represent the parameter matrices that are shared
with each neuron:

Figure 1: Visual representation of a neural network
(LeCun, 2015)

For the purpose of this paper, we have
implemented some code in Python demonstrating
an RNN. Please assume that this network has already
been supplied training data and the data has been
compressed into the vector. The x parameter of the
run method represents the input sequence vector
and returns an output vector that must be decoded
into the output language:

Analysis of Applied Mathematics ½Volume 10

3

Here is an example of code that encodes input
text to a vector that can be supplied to the RNN
pictured above:

And finally, here is a method that decodes the
prediction values provided by the RNN to actual
machine predicted text:

Cho (2014) has previously proposed a model
of machine translation that relies on two recurrent
neural networks. This approach, referred to as an
RNN Encoder-Decoder model, is described as “[o]ne
RNN encodes a sequence of symbols into a fixed
length vector representation, and the other decodes
the representation into another sequence of
symbols” (Cho, 2014).

Similar to the neural networks described
above, the encoder and decoder are both “trained” to
provide output with the greatest likelihood of an
accurate translation from the input. In this proposed
model, input and output phrase lengths can differ.

The decoder RNN provides the sequence
vector and predicts, probabilistically, what the likely
translations are, given the training corpora the
system has been provided. Phrase pairs are scored
with this probability and the output phrase or
sequence is constructed from these likelihood scores
(Cho, 2014).

To summarize above Encoder-Decoder model
works as depicted in the diagram

Figure 2: Process of encoder and decoder

Here, “ABC” is the source text and these
input units (first 3) comprise the encoder. The
following 5 units constitute the decoder for target
text (“WXYZ”). RNNs can do the following:

1. Summarize a string into state vector,

2. Predict next word, based on previously processed
string (given “AB” able to predict “ABC”)
The code described previously, does the second
task. For the encoder-decoder model

we construct and encoder to do the first task, then
we train both the encoder-decoder simultaneously to
do the translation. The black boxes in the above
diagram are GRU cells (Cho, 2014).

For our implementation, we have used the
tensorflow library for GRUcell implementation.
Next, we create a sequence to sequence model as
depicted in the code:

def single_cell():

 return tf.contrib.rnn.GRUCell(size)

cell = single_cell()

Analysis of Applied Mathematics ½Volume 10

After training, this architecture is good enough
to translate. But we have to train the model for
maximum log likelihood (described previously). We
use the SGD method for training, see code:

The step method (in code above), is derived
from the tensorflow library to make a complete step
comprising of doing a forward pass, calculating losses,
back propagating errors and modifying weights.

To optimize performance of the code,
bucketing is used, which we will ignore for now.

There are some significant drawbacks to the
RNN Encoder-Decoder approach. Primarily, there is a
drop off after sentences reach a length of 20 words.
The BLEU scores drop from between 20 and 25 to
eventually below 10 (Cho, 2015). Additionally, there
can be significant errors at the end of long sentences
(Cho, 2015). The current alignment model that
focuses on word for word translations result in very
poor output sentences for languages with different
grammatical structures. For example, English and
German can have very different rules about where
nouns and verbs should be present in sentences. This
model struggles with translation between these
languages.

 A quick aside: the Bleu score is a metric
proposed by Papieni et al. (2002) that seeks to
measure how accurately a machine translated a word
by comparing it to a translation performed by a
human.

Translations are judged by a precision metric
which “counts up the number of candidate
translation words (unigrams) which occur in any
reference translation and then divides by the total
number of words in the candidate
translation” (Papieni et al. 2002).

 Cho (2015) provides an excellent graphic
demonstrating the current models of machine
translation with SMTs and neural networks:

Figure 3: Current models of SMT’s and neural
networks (Cho 2015)

4. Jointly Learning to Align and Translate

Cho (2015) proposed a potential significant
advancement in neural network machine translation
over the previously discussed RNN Encoder-Decoder
approach. This novel approach, referred to as RNN
Encoder-Decoder jointly learning to align and
translate, has state-of-the-art advancements that we
will discuss at length.

 This approach to machine translation
depends, much like the earlier proposed system, on
two RNNs. Except, the encoder is bidirectional and
the decoder is modeled to behave similarly to a
search algorithm (Cho, 2015). A context vector is
implemented that

depends on “a sequence of annotations… to
which an encoder maps the input sentence. Each
annotation contains information about the whole
input sequence with a strong focus on the parts
surrounding the i-th word of the input
sequence” (Cho, 2015). The figure to the right is a
visual model of the system.

4

Analysis of Applied Mathematics ½Volume 10

 A bidirectional RNN consists of RNN
architecture that runs both forward and backward
(unlike our code example that only implements
forward propagation). Hidden states for both
directions are created and concatenated together to
form single states. Why would we want to use a
bidirectional RNN? Especially in the case of language
translation, later words in a sequence are just as useful
as the previous words in generating a highly likely
output (Goldberg, 2015). The concatenation
approach also allows for words to be computed in
context, so the words are considered with their
immediate neighbors.

Here is a brief summary of the concatenation
process:

In this way, the annotation hj contains the
summaries of both the preceding words and the
following words. Due to the tendency of RNNs to
better represent recent inputs, the annotation hj will
be focused on the words around xj. This sequence of
annotations is used by the decoder and the alignment
model later to (Cho, 2015).

 The decoder is additionally described as such:

“It should be noted that unlike the existing
encoder–decoder approach, here the probability is
conditioned on a distinct context vector c(i) for each
target word y(i). The context vector c(i) depends on a
sequence of annotations (h1, · · · , hTx) to which an
encoder maps the input sentence. Each annotation
h(i) contains information about the whole input
sequence with a strong focus on the parts
surrounding the i-th word of the input sequence.
The context vector c(i) is, then, computed as a
weighted sum of these annotations h1” (Cho, 2015).

The decoder depends on an accurate
alignment model that computes a “soft alignment”
between the input sequence around a position with
the output at a corresponding position. These
positions are assessed on how well they match and
this score is backpropagated through the network
(Cho, 2015). This is precisely how phrases are
translated “in context” so that word order isn’t as
important a factor for the inputs and outputs.

 We will discuss the results in greater detail
later on, however here we would like to point out
some of the advantages the results indicate. First,
unlike the RNN Encoder-Decoder approach, the
bidirectional approach has no significant drop off in
performance after sentence lengths of 20 words.
Additionally, the bidirectional approach achieves
BLEU scores up to 25% higher than the RNN
Encoder-Decoder approach. We also must mention
that word and phrase alignment is much better with
the proposed architecture. For example, Cho
translates from English to French, which can have
very different grammatical rules and word
alignments. This model handles them superbly.
Finally, this implementation will encode into a
variable sized vector.

 The performance is better for several
reasons, including eliminating the fixed vector
bottleneck, and removing the need for the RNN to
remember the whole sentence as a state in memory
(Cho, 2015). The experimental results will prove
these hypotheses.

5. Experimental Results

Cho (2015) ran an evaluation experiment to
test this idea on an English to French dataset. They
compared the performance of the proposed RNN
with the previously described RNN Encoder-
Decoder architecture. Each model was trained twice
with sentences as long as 30 words and sentences as
long as 50 words. Here is a graph underscoring the
resulting BLEU scores (RNNsearch is the
bidirectional jointly learning to align and translate
approach):

Figure 4: Graph of BLEU score relative to sentence
length

5

Analysis of Applied Mathematics ½Volume 10

The figure above illustrates that performance is
generally better for nearly all sentence lengths.
Additionally, examining the outputs reveals that
words are correctly aligned with their grammatically
correct French translations. Cho writes: “we see that
the model correctly translates a phrase [European
Economic Area] into [zone economique
europeen]” (Cho, 2015). The alignment correctly
handled this translation by considering the entire
phrase at a given location, rather than each individual
word.

As was predicted, fixed length vectors create a
bottleneck in the translation of long sentences.
However, there are other probable reasons why longer
sentences have higher BLEU scores. For example, the
RNNsearch paradigm “does not require encoding a
long sentence into a fixed-length vector perfectly, but
only accurately encoding the parts of the input
sentence that surround a particular word” (Cho,
2015). The model is able to primarily direct its
attention to the information relevant to the
production of the next word. All of these aspects work
in conjunction to produce excellent log-probability of
output translations.

These results would mark a significant leap
forward in the development of neural network
machine translation. The performance is “comparable
to the existing phrase-based statistical machine
translation” (Cho, 2015). There is still room for
improvement, however. The systems must be able to
translate untrained, novel words- so work toward
developing a paradigm is greatly needed.

6. Summary

Machine translation has advanced
tremendously in the past few years. Novel methods in
statistical approaches have driven much of the
improvements. However, in recent years paradigms
have emerged that rely on neural network
architectures. Neural network architectures, in
conjunction with the statistical approaches, have led
to explosive growth in machine translation and
natural language processing in general. This
discussion was focused on summarizing the
architecture proposed by Cho (2015). A bidirectional
RNN with a variable sized vector, alignment model
and decoder that computes output based on context,
not just word for word.

This approach represents a significant potential
advancement in the use of neural networks for
machine translation.

As was shown, the experimental results are
promising. BLEU scores for the proposed
architecture were significantly higher than the other
RNN approach. Additionally, BLEU scores did not
drop off when sentences were longer than 20 words.
Finally, the concluding phrases of output sentences
remained high quality based on BLEU scores, also
an improvement over the RNN encoder-decoder
implementation.

 If given more time and resources, using the
above created encoder-decoders, this research
project would have entailed training our RNNs
more using proper datasets that were available. In
addition, the research would have attempted to fine
tune the translation encoder-decoders similar to
Cho (2015).

6

Analysis of Applied Mathematics ½Volume 10

References
Brown, P., J. Cocke, S. Dell, and A. Pietra. "A
STATISTICAL APPROACH TO LANGUAGE

TRANSLATION." Computational Linguistics 16.2
(1990): 79-85. Web.
Brown, P., S. Della Pietra, V. Della Pietra, R. Mercer.
“The Mathematics of Statistical Machine

Translation: Parameter Estimation.” Computational
Linguistics 19.2 (1993): 263-311. Web.
Dzmitry Bahdanau, Kyunghyun Cho: “Neural
Machine Translation by Jointly Learning to

Align and Translate”, 2014; [http://arxiv.org/
abs/1409.0473 arXiv:1409.0473].
Ilya Sutskever, Oriol Vinyals: “Sequence to Sequence
Learning with Neural Networks”, 2014;

[http://arxiv.org/abs/1409.3215 arXiv:1409.3215].
Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk: “Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine
Translation”, 2014; [http://arxiv.org/abs/1406.1078
arXiv:1406.1078].

Kyunghyun Cho, Bahdanau, D.: “Neural Machine
Translation by Jointly Learning to Align and

Translate”, 2015; [http://arxiv.org/abs/1409.0473
arXiv:1409.0473].
Mikolov, T., V. Le Quoc., I. Sutskever. “Exploiting
Similarities among Languages for Machine

Translation.”
Papieni, K., S. Roukos, T. Ward, W. Zhu. “BLEU: a
Method for Automatic Evaluation of Machine

Translation.” Computational Linguistics (2002):
311-318. Web.
Tomas Mikolov, Quoc V. Le: “Exploiting Similarities
among Languages for Machine

Translation”, 2013; [http://arxiv.org/abs/1309.4168
arXiv:1309.4168].
Yoav Goldberg: “A Primer on Neural Network
Models for Natural Language Processing”,

2015; [http://arxiv.org/abs/1510.00726
arXiv:1510.00726].
Y. LeCun, Bengio, Y., Geoffrey, H. “Deep Learning.”
Nature (2015): 436-444. Web.

7

	Blank Page

