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1. INTRODUCTION

Software translation from one language to 
another has experienced significant advances in recent 
years. The opportunities that are provided by quality, 
error free translation are enormous. These potential 
opportunities for machine translation range from 
making books written in English available to German 
speaking customers to providing mission critical 
software systems, such as medical systems, available to 
any doctor in the world. 

Because of the advantages machine translation 
would provide, exploration of different translation 
models continue. Likewise, the predominant industry 
paradigms are not yet error free (Goldberg, 2015). As 
such, machine translation is an incredibly exciting area 
of research with far reaching consequences. 

Other important areas of research for machine 
translation abound. Are we interested in translating 
spoken word? Written text? A document? Additionally, 
a language may have words with multiple meanings, or 
may literally mean something in another language that 
does not have the required context (such as a 
colloquialism). Adequate machine translation needs to 
account for all of these pitfalls. 

There are several ways to write a machine 
translation program. One could, obviously, write a 
program with guidelines provided by a bilingual 
speaker. Unfortunately, the domain would be 
immense. It would be impossible to write software that 
would take into account every possible rule of 
translation for each word, each context of a word, each 
context of a phrase, etc.  

One of the more successful methods from 
recent years for machine translation has been the use 
of learning or training models. That is, “teaching” a 
computer to correctly recognize proper translation. 
These methods have advanced machine translation 
greatly, and they will be the focus for discussion. 
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 This paper will discuss the current dominant 
paradigms of machine translation, including 
statistical machine translation and the recurrent 
neural network encoder-decoder approach. There are 
advantages and disadvantages to both. Additionally, 
we will summarize and discuss recent work proposed 
by Kyunghyun Cho (2015) regarding a potential 
advancement in the use of the RNN Encoder-
Decoder approach. 

2. Issues with current paradigms of 
   Machine translation

Statistical Machine Translation 

Revisiting our example of a potential 
machine translator from earlier, what could we do 
differently? Well, one common technique is to 
program a machine to take some text in one 
language and the same text in another language so it 
can “learn” which words map to other words. 

The statistical aspect comes in with mapping 
words to other words. Using Bayesian calculations, 
probabilities are assigned to word pairings. Why do 
we use statistics? The answer is because a sentence in 
one language doesn’t have a single translation in 
another language. It can be translated into multiple 
different words or sentences. As such, we use 
probabilities to represent the likelihood that a 
sentence in one language is the likely translation of 
the sentence in the original language (Brown, 1990). 

The likelihood that an output word 
adequately represents the same word from the 
original language is referred to as the “log 
likelihood”. Once we’ve provided the statistical 
machine translator with a set of input and output 
translations, the machine can start to make 
inferences about novel data and provide us with 
probabilities that reflect the log likelihood that the 
outputs are accurately translated (Brown, 2003). 
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 There are several drawbacks to this type of 
system, however. 
First, errors are difficult to discover and fix. Related to 
this problem, SMT systems are very good at providing 
understandable translations that disguise errors during 
the translation process. Additionally, when word order 
matters, SMT systems aren’t as accurate. SMT 
translations between similar western languages are 
much more successful than translating between a 
western language and Chinese, for example. Finally, 
it’s difficult for SMT to take into account specific 
contextual clues regarding a metaphor in one language 
and correctly translate it into an understandable 
phrase in the output language (Brown, 1990). 

3. Neural Machine Translation and the RNN
Encoder-Decoder Approach to Machine
Translation

Both IBM and Google have utilized neural 
networks to great success. Google, specifically, has 
been a pioneer in the use of a neural network to 
increase the speed and accuracy of language translation 
(see Mikolov, 2013 and Sutskever, 2014). More 
recently, natural language processing has been 
advancing with hybrid neural networks and SMT 
approaches. Cho has extensively detailed this newer 
paradigm in a 2014 paper. 

Before we can get into neural machine 
translation, however, we must discuss what a neural 
network is. 

A neural network is, essentially, a computer 
system that is designed to function similarly to the 
human brain’s system of neurons. Information is 
stored and computed in nodes and is propagated to 
other nodes with a system of edges, or connections to 
other nodes (neurons) (Sutskever et al. 2014). The 
internal nodes are considered “hidden”. These nodes 
are assigned probability weights based on Gaussian 
distributions. Input is “forward-propagated” through 
the hidden layers to produce output that is closer to 
the expected output (Goldberg, 2015). 

At its most basic operation level, there are two 
visible sets of neurons. One set represents the input 
neurons and the second set represents the output 
neurons (Goldberg, 2015). The network itself is 
considered “hidden”, a black box where the system of 
internal processing neurons manage the data to 
produce outputs. 

The motivation behind developing a system 
this way is that the machine teaches itself based on 
the data it is provided. There is no dependency, like 
with an SMT, on the functions the machine is 
provided in its programming  

A Recurrent Neural Network, or RNN, is a 
system that maintains an internal, hidden state. This 
is in contrast with a typical feed-forward neural 
network which computes the system’s state from 
scratch at every node. RNNs utilize information 
sequentially which is why they make for good 
machine translation architectures.  Later neuron 
processing is dependent on what previous neurons 
have calculated allowing for inputs of arbitrary     
length. This is the main advantage of designing a 
machine translation system with an RNN - an input 
can be of variable size in relation to the output. The 
variable input is compressed to a fixed-length vector 
for processing (Cho, 2014). 

Here is an excellent graphic demonstrating 
RNN computation. The variable x represents a given 
time step through the network, s is each hidden state, 
o is the output passed to later neurons, and U, V and
W represent the parameter matrices that are shared
with each neuron:

Figure 1: Visual representation of a neural network 
(LeCun, 2015) 

For the purpose of this paper, we have 
implemented some code in Python demonstrating 
an RNN. Please assume that this network has already 
been supplied training data and the data has been 
compressed into the vector. The x parameter of the 
run method represents the input sequence vector 
and returns an output vector that must be decoded 
into the output language: 
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Here is an example of code that encodes input 
text to a vector that can be supplied to the RNN 
pictured above:  

And finally, here is a method that decodes the 
prediction values provided by the RNN to actual 
machine predicted text: 

Cho (2014) has previously proposed a model 
of machine translation that relies on two recurrent 
neural networks. This approach, referred to as an 
RNN Encoder-Decoder model, is described as “[o]ne 
RNN encodes a sequence of symbols into a fixed 
length vector representation, and the other decodes 
the representation into another sequence of 
symbols” (Cho, 2014).  

Similar to the neural networks described 
above, the encoder and decoder are both “trained” to 
provide output with the greatest likelihood of an 
accurate translation from the input. In this proposed 
model, input and output phrase lengths can differ. 

The decoder RNN provides the sequence 
vector and predicts, probabilistically, what the likely 
translations are, given the training corpora the 
system has been provided. Phrase pairs are scored 
with this probability and the output phrase or 
sequence is constructed from these likelihood scores 
(Cho, 2014). 

To summarize above Encoder-Decoder model 
works as depicted in the diagram

Figure 2: Process of encoder and decoder 

Here, “ABC” is the source text and these 
input units (first 3) comprise the encoder. The 
following 5 units constitute the decoder for target 
text (“WXYZ”). RNNs can do the following: 

1. Summarize a string into state vector,

2. Predict next word, based on previously processed 
string (given “AB” able to predict “ABC”)
The code described previously, does the second 
task. For the encoder-decoder model

we construct and encoder to do the first task, then 
we train both the encoder-decoder simultaneously to 
do the translation. The black boxes in the above 
diagram are GRU cells (Cho, 2014 ).   

For our implementation, we have used the 
tensorflow library for GRUcell implementation. 
Next, we create a sequence to sequence model as 
depicted in the code:   

def single_cell(): 

 return tf.contrib.rnn.GRUCell(size) 

cell = single_cell() 
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After training, this architecture is good enough 
to translate. But we have to train the model for 
maximum log likelihood (described previously). We 
use the SGD method for training, see code:

The step method (in code above), is derived 
from the tensorflow library to make a complete step 
comprising of doing a forward pass, calculating losses, 
back propagating errors and modifying weights. 

To optimize performance of the code, 
bucketing is used, which we will ignore for now.

There are some significant drawbacks to the 
RNN Encoder-Decoder approach. Primarily, there is a 
drop off after sentences reach a length of 20 words. 
The BLEU scores drop from between 20 and 25 to 
eventually below 10 (Cho, 2015). Additionally, there 
can be significant errors at the end of long sentences 
(Cho, 2015). The current alignment model that 
focuses on word for word translations result in very 
poor output sentences for languages with different 
grammatical structures. For example, English and 
German can have very different rules about where 
nouns and verbs should be present in sentences. This 
model struggles with translation between these 
languages. 

 A quick aside: the Bleu score is a metric 
proposed by Papieni et al. (2002) that seeks to 
measure how accurately a machine translated a word 
by comparing it to a translation performed by a 
human. 

Translations are judged by a precision metric 
which “counts up the number of candidate 
translation words (unigrams) which occur in any 
reference translation and then divides by the total 
number of words in the candidate 
translation” (Papieni et al. 2002). 

 Cho (2015) provides an excellent graphic 
demonstrating the current models of machine 
translation with SMTs and neural networks: 

Figure 3: Current models of SMT’s and neural 
networks (Cho 2015) 

4. Jointly Learning to Align and Translate

Cho (2015) proposed a potential significant 
advancement in neural network machine translation 
over the previously discussed RNN Encoder-Decoder 
approach. This novel approach, referred to as RNN 
Encoder-Decoder jointly learning to align and 
translate, has state-of-the-art advancements that we 
will discuss at length. 

 This approach to machine translation 
depends, much like the earlier proposed system, on 
two RNNs. Except, the encoder is bidirectional and 
the decoder is modeled to behave similarly to a 
search algorithm (Cho, 2015). A context vector is 
implemented that

depends on “a sequence of annotations… to 
which an encoder maps the input sentence. Each 
annotation contains information about the whole 
input sequence with a strong focus on the parts 
surrounding the i-th word of the input 
sequence” (Cho, 2015). The figure to the right is a 
visual model of the system. 
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 A bidirectional RNN consists of RNN 
architecture that runs both forward and backward 
(unlike our code example that only implements 
forward propagation). Hidden states for both 
directions are created and concatenated together to 
form single states. Why would we want to use a 
bidirectional RNN? Especially in the case of language 
translation, later words in a sequence are just as useful 
as the previous words in generating a highly likely 
output (Goldberg, 2015). The concatenation 
approach also allows for words to be computed in 
context, so the words are considered with their 
immediate neighbors. 

Here is a brief summary of the concatenation 
process: 

In this way, the annotation hj contains the 
summaries of both the preceding words and the 
following words. Due to the tendency of RNNs to 
better represent recent inputs, the annotation hj will 
be focused on the words around xj. This sequence of 
annotations is used by the decoder and the alignment 
model later to (Cho, 2015). 

 The decoder is additionally described as such: 

“It should be noted that unlike the existing 
encoder–decoder approach, here the probability is 
conditioned on a distinct context vector c(i) for each 
target word y(i). The context vector c(i) depends on a 
sequence of annotations (h1,  · · · , hTx) to which an 
encoder maps the input sentence. Each annotation 
h(i) contains information about the whole input 
sequence with a strong focus on the parts 
surrounding the i-th word of the input sequence. 
The context vector c(i) is, then, computed as a 
weighted sum of these annotations h1” (Cho, 2015). 

The decoder depends on an accurate 
alignment model that computes a “soft alignment” 
between the input sequence around a position with 
the output at a corresponding position. These 
positions are assessed on how well they match and 
this score is backpropagated through the network 
(Cho, 2015). This is precisely how phrases are 
translated “in context” so that word order isn’t as 
important a factor for the inputs and outputs. 

 We will discuss the results in greater detail 
later on, however here we would like to point out 
some of the advantages the results indicate. First, 
unlike the RNN Encoder-Decoder approach, the 
bidirectional approach has no significant drop off in 
performance after sentence lengths of 20 words. 
Additionally, the bidirectional approach achieves 
BLEU scores up to 25% higher than the RNN 
Encoder-Decoder approach. We also must mention 
that word and phrase alignment is much better with 
the proposed architecture. For example, Cho 
translates from English to French, which can have 
very different grammatical rules and word 
alignments. This model handles them superbly. 
Finally, this implementation will encode into a 
variable sized vector. 

 The performance is better for several 
reasons, including eliminating the fixed vector 
bottleneck, and removing the need for the RNN to 
remember the whole sentence as a state in memory 
(Cho, 2015). The experimental results will prove 
these hypotheses. 

5. Experimental Results

Cho (2015) ran an evaluation experiment to 
test this idea on an English to French dataset. They 
compared the performance of the proposed RNN 
with the previously described RNN Encoder-
Decoder architecture. Each model was trained twice 
with sentences as long as 30 words and sentences as 
long as 50 words. Here is a graph underscoring the 
resulting BLEU scores (RNNsearch is the 
bidirectional jointly learning to align and translate 
approach): 

Figure 4: Graph of BLEU score relative to sentence 
length 

5



Analysis of Applied Mathematics ½Volume 10

The figure above illustrates that performance is 
generally better for nearly all sentence lengths. 
Additionally, examining the outputs reveals that 
words are correctly aligned with their grammatically 
correct French translations. Cho writes: “we see that 
the model correctly translates a phrase [European 
Economic Area] into [zone economique 
europeen]” (Cho, 2015). The alignment correctly 
handled this translation by considering the entire 
phrase at a given location, rather than each individual 
word. 

As was predicted, fixed length vectors create a 
bottleneck in the translation of long sentences. 
However, there are other probable reasons why longer 
sentences have higher BLEU scores. For example, the 
RNNsearch paradigm “does not require encoding a 
long sentence into a fixed-length vector perfectly, but 
only accurately encoding the parts of the input 
sentence that surround a particular word” (Cho, 
2015). The model is able to primarily direct its 
attention to the information relevant to the 
production of the next word. All of these aspects work 
in conjunction to produce excellent log-probability of 
output translations. 

These results would mark a significant leap 
forward in the development of neural network 
machine translation. The performance is “comparable 
to the existing phrase-based statistical machine 
translation” (Cho, 2015). There is still room for 
improvement, however. The systems must be able to 
translate untrained, novel words- so work toward 
developing a paradigm is greatly needed. 

6. Summary

Machine translation has advanced 
tremendously in the past few years. Novel methods in 
statistical approaches have driven much of the 
improvements. However, in recent years paradigms 
have emerged that rely on neural network 
architectures. Neural network architectures, in 
conjunction with the statistical approaches, have led 
to explosive growth in machine translation and 
natural language processing in general. This 
discussion was focused on summarizing the 
architecture proposed by Cho (2015). A bidirectional 
RNN with a variable sized vector, alignment model 
and decoder that computes output based on context, 
not just word for word. 

This approach represents a significant potential 
advancement in the use of neural networks for 
machine translation. 

As was shown, the experimental results are 
promising. BLEU scores for the proposed 
architecture were significantly higher than the other 
RNN approach. Additionally, BLEU scores did not 
drop off when sentences were longer than 20 words. 
Finally, the concluding phrases of output sentences 
remained high quality based on BLEU scores, also 
an improvement over the RNN encoder-decoder 
implementation. 

 If given more time and resources, using the 
above created encoder-decoders, this research 
project would have entailed training our RNNs 
more using proper datasets that were available. In 
addition, the research would have attempted to fine 
tune the translation encoder-decoders similar to 
Cho (2015).
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