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ABSTRACT
While current GPS systems do efficiently map routes from a starting point to a desired destination for different 
modes of transportation, it is the unfortunate case that these systems are not optimized and personalized for the 
user. For example, a user might have a limited amount of money or preferences for types of roads they want to 
travel. In addition, many times, route-finding systems fail to acknowledge the realistic logistics of the road when 
mapping the shortest distance, such as constantly changing road congestion or waiting times at traffic lights. This 
lack of personalization and accuracy makes it difficult and frustrating to utilize such services at times. Developing
an algorithm to tackle these problems would help users to get to place faster while optimizing their journey based 
on their interests, facilitating travel from place to place. This paper ultimately aims to gain inspiration from, and 
apply, Dijkstra’s Algorithm to various shortest path problem variants and formulate actual al gorithms that are 
tested for efficiency.  

Graph
In a mathematical context, graphs represent shapes consisting of 
vertices and the edges that connect select vertices. These objects 
can be utilized to represent many real life situations. Some examples 
include networks consisting of interconnected computers or cities 
and the roads that connect them. Depending on the amount of 
edges relative to the number of vertices, graphs can be divided into 
dense/sparse graphs. Furthermore, the two most basic methods 
of data storage for vertices and edges are adjacency matrices and 
adjacency lists. Since the efficiency of each storage method differs 
case by case for the structure of the graph, the paper utilizes both to 
tackle each problem. [1]

Dijkstra’s Algorithm
In order to solve the many shortest path problems presented in this 
paper, the famous path-finding algorithm – “Dijkstra’s Algorithm” 
– was used extensively. Given a graph with vertices and weighted 

Figure 1: An example of graph modeling

1. INTRODUCTION

2. DIJKSTRA’S ALGORITHM

2.1. OVERVIEW  
Dijkstra’s Algorithm maps a route by constantly updating the 
distance from one vertex to another. By default, all distances from the 
starting vertex are set to infinity regardless of the weights respective 
to each edge. The algorithm first looks at the neighboring nodes - if 
the newly calculated distance is smaller than the current distance, 
the distance is updated. Subsequently, the current node will be 
reallocated to the node that has the smallest assigned distance. 

Again, the neighboring nodes are analyzed and if the newly 
calculated distance based on the weights is smaller than the current 
distance, the distance is updated and the current node is moved. 
This process is repeated until the destination becomes the current 
node. Alternatively, if a destination is not defined, the algorithm 
will continue to run until all distances have been updated.

edges, Dijkstra’s Algorithm can find the shortest path from one 
vertex to another. This can easily be translated to the situation 
at hand by converting a map into a weighted graph: places are 
represented as vertices, roads are represented as edges, and other 
factors such as distance or congestion can be input through the 
weights assigned to edges.

Design of the Paper    
Section 2 of the paper is dedicated to proving the Dijkstra’s algorithm, 
as well as explaining the numerous variations to be utilized in data-
storage and algorithm building for the code. Since the density of the 
graph is determines which variation of Dijkstra’s Algorithm is more 
efficient, two different methods were used: the “for loop” and the 
“priority queue.”  Section 3 presents said variations of the algorithm 
and explains how they were made to fit each shortest path problem. 
With each problem, the methods and results are presented. Finally, 
the conclusion compiles and brings all the results together.
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2.2. PROOF OF ALGORITHM  
The proof of the feasibility of the algorithm is quite simple through a 
proof by contradiction. Let’s say that there is a set S of points whose 
shortest paths from the starting point have already been established.
Suppose that there is a vertex x outside of it that, by Dijkstra’s 
theorem is the next point to be registered so that the shortest path to 
vertex x should be one that is directly connected to set S. However, 
let us say that there is a vertex y such that an indirect path to vertex 
x through vertex y is the shorter path, thereby refuting the theorem. 
However, if this is true, vertex y would have been the next vertex 
to be registered rather than vertex x. Therefore, the contradiction 
is invalid. Although the proof is invalid when edges with negative 
weights are involved, since that is not the case for finding paths in 
real life, the proof is solid.

3. APPLICATIONS AND EXPERIMENTS

2.3. “FOR” LOOP VS. PRIORITY QUEUE 
There are two main ways of constructing a python code for Dijkstra’s 
Algorithm: employing the structure of a “for” loop or using a priority 
queue. As can be seen in the pseudo-code, the method of a “for” 
loop was used due to its superiority of time complexity in this case.  
Time complexity is the computational complexity that describes 
the amount of time it takes to run an  algorithm. Time complexity 
is commonly estimated by counting the number of elementary 
operations performed by the algorithm, supposing that each 
elementary operation takes a fixed amount of time to perform. 

When using the loop, for each vertex, the loop goes as such. It first 
searches among the vertices that do not have a set distance in order to 
find the current smallest value. This will result in a time complexity 
of V for each loop. Subsequently, after the vertex has been registered 
as the current vertex, each of its edges are evaluated in order to 
update them if a smaller distance is found. After all loops have been 
completed, this will result in a time complexity of E. Therefore, the 
final time complexity can be represented by O(V2+E).
 
On the other hand, the nature of a priority queue allows it to 
produce a time complexity of logE because it makes a tree of all the 
edges for each vertex. When the entire code has been run, the final 
time complexity will be O(ElogE). Since we are using maps of cities, 
it is important to note that the resulting graphs will be very dense. 
As a result, it follows that in such dense graphs, V2+E < ElogE since 
E is considerably bigger than V. Therefore, the “for” loop is a better 
choice in this case.
  
2.4. GRAPH STORAGE METHOD
When constructing the code in python, there were two ways to 
store the graph upon which the algorithm would operate on. The 
information pertaining to the graph, including the number of 
vertices, connections between vertices, and the weights of edges, 
could either be stored as an adjacency matrix or an adjacency graph. 
Using an adjacency list would mean creating a dictionary with each 
vertex being a key and the value being a list of pairs (connected 

vertex, weight of edge) to the corresponding vertex. An adjacency 
matrix would be a matrix with coordinates with vertices as values 
(v1, v2). If the two vertices aren’t connected, the value in the matrix 
would be 0. If they are, the value would be the weight of the edge 
that connects them.

Since running time is a crucial factor in choosing the optimal code, 
the method of creating an adjacency list was chosen because of its 
ability to run faster than an adjacency matrix. When the matrix 
is used, unnecessary information is used because vertex pairs 
that are not connected are included in the matrix. Therefore, the 
computer will have to go through extraneous data before it can 
access the vertices that are actually connected. On the other hand, 
the adjacency list simply stores data just for the vertices that are 
connected, eliminating much of the running time that is present 
when using a matrix. Although the time gap will be minimal if 
the graph is very dense, the fact remains that using an adjacency 
list always results in a shorter running time, making it the optimal 
choice.

Problem 1.  Dijkstra 
In this case, distance is the only limiting factor for paths. While 
finding a path from the starting point to the destination, the 
path with the shortest distance is to be found. The inputs for this 
problem will be the weight of the distance of the edge for each pair 
of connected vertices. Each time an edge is crossed and a vertex is 
reached, the weight will be added to the current distance to that 
vertex. The current distance to a vertex will always be the shortest 
one and will be updated accordingly, depending on novel paths to 
the vertex.  

In order to test the efficiency of the two different types of graph 
storage method - matrix and list - as well as Dijkstra algorithms - “for” 
loop and priority queue - in terms of running time, each method 
was executed onto either a sparse or a dense graph. A subway map 
was used as an example of a sparse graph, and a complete graph 
with 3000 vertices was used for the dense graph.[3] Below are the 
running times ofe ach method.

Figure 2: Proof of Dijkstra’s algorithm

Figure 3: Adjacency Matrix(mid) and Adjacency List(right)
of Sample Graph(left) [2]
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Problems 2. Limited Money 
Realistically, travelers possess a limited amount of money that they 
can use for transportation. Thus, we add a second factor to the 
algorithm, which is cost. While finding a path from the starting point 
to the destination, the amount of remaining money must always be 
greater than or equal to zero. In addition, the distance should be 
minimal while maintaining a cost lower than the threshold. 
 
In addition to the initial weight of distance in the edges, a second 
weight of the cost for traversing each edge will be appended to the 
adjacency list. There will also be an additional required input of 
the initial cost that the person starts with at the starting point. 
The algorithm will be set so that each time an edge is crossed, the 
respective cost will be subtracted from the remaining cost at the 
current vertex, and a path will be deleted if the remaining cost 
becomes a negative value.  

Since there are 2 limiting factors, although it does mean that there 
can be multiple stored paths at each vertex, this doesn’t mean that 
all paths with non-negative remaining costs will be stored as valid. 
At each vertex, certain paths will be obviously “better” regardless 
of subsequent movements. If, for one path, the remaining cost is 
lower and the distance is greater than another at the same vertex, 
the former path will be deleted. The same goes for when one of the 
conditions remains true and the values are the same for the other. 
Otherwise, all paths will be stored as valid.

As can be seen in Table 1, the priority queue method was comparatively 
efficient in the case of a sparse graph, but the opposite is apparent 
in the case of a dense graph. This is a predictable result. Since 
the sparser the graph is, the more accurate is the approximation, 
V≈E, and thus the time complexity of O(ElogE) is better than that 
of O(V^2+E) (faster results, therefore smaller time complexity, is 
considered “better”). 
 

(V2+E)-(ElogE)≈(E2+E)(ElogE)=E2+E(1-logE)>0

since the domain of E is [0, ∞), all integers.

The four versions of codes that were used are included in the 
Appendix.

Problems 3. Minimal Transitions  
The number of transitions that are made between subway lines, bus 
lines, or modes of transportation is taken into consideration in this 
case. This time, a second limiting factor of frequency of transitions 
of a path is added. While finding a path from the starting point to 
the destination, the algorithm must maintain a minimal number of 
transitions. 

For this case, there will be a second required input of the “type” of 
each edge in addition to the distance. The type of the edge will be 
an indicator of transition because if the type of the previous edge is
different from the subsequent edge in respect to the vertex, it means 
that a transition was made. However, there will not be two methods 
of storage for the paths because the number of transitions will not 
be stored separately from the distance of the path. Instead, the 
algorithm will be structured so that a transition is extremely harmful 
to the path. Each time a transition is made in a path, an extremely 
large number, one that is much greater than the weights of the edges 
will be added to the current distance. As a result, a path with a 
smaller number of transitions will always be superior to the one with 
more transitions.

However, these paths will not necessarily be deleted. Sometimes, 
transitions will be necessary to get from the starting point to the 
destination. In this case, the extremely large number will have to be 
added to all paths, resulting in comparison among these large values. 
Transitions can be thought of as levels, because paths will always be 
compared among those with the same number of transitions.

Table 2: Pseudocode for Problem 1

Table 3: Pseudocode for Problem 2

Table 4: Pseudocode for Problem 3

Table 1: Time Comparison between adjacency matrix/list and graph types
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Problems 4. Traffic lights
A major influential factor in travelling is the periodical delay that 
results from the changing of  traffic lights. Due to traffic lights, an 
edge can be passed through during a certain portion of a period, 
the period being the length of a cycle from the start of a green light 
to the end of a green light. If an edge connecting two vertices is not 
passable at a certain moment, there will be a waiting time that adds 
on to the inherent weight of the edge. As a result, the algorithm 
takes into account the waiting times at given moments, influencing 
the path that it creates. An edge that is shorter than another may be 
deemed longer if there is a waiting time that is present. 

An important assumption is made in running the algorithm, which 
is, upon the start of the path, every traffic light starts at a green 
light. However, it is important to note that this assumption does not 
influence the algorithm’s accuracy when the assumption does not 
hold true, because if it is able to perform normally in subsequent 
steps, it means that it is able to perform normally in non-uniform 
traffic-lights. The assumption is made simply for convenience when 
constructing the algorithm.

The algorithm was tested on an actual subway map of seoul to 
determine optimality between a for-loop and a priority queue, as 
well as a matrix and an adjacency list. JSON was utilized to extract 
information from a data file containing the information for the 
lines and stops of the subway system in Seoul. Once a graph was 
constructed using JSON, either as a matrix or an adjacency list, 
the algorithm was executed to compare the running time between 
the different methods. Specifically, the algorithm was tested on 
several examples of routes between one station and another, such 
as Apgujeong Station to Seoul Forest Station. As can be seen, it 
displays the route that takes the minimum amount of transitions.

Problems 5. Congestion Updates 
Traffic situations are subject to change from the moment a path is 
determined due to fluctuating congestion on the while traveling. A 
traffic accident that occurs may lead to a drastic increase in the time 
it takes to get through a road. The path should be continuously 
updated based upon the changing values of the edges leading to 
unvisited vertices. Input of new weights of the edges can potentially 
produce a path different from the current one.
 
The algorithm will not terminate after it is run at the starting 
point; it will continue to perform reruns based upon new inputs 
in weights of edges. If there are no modifications made to the 
weights, then the path is unchanged. However, if  the weight of 
an edge is changed, the Dijkstra Algorithm is run again, with the 
current vertex as the new starting point and the same destination 
as before. Thus, based upon the change in the traffic situations, a 
new optimal path will be formed. In order to accomplish this, the
Dijkstra Algorithm itself will be contained inside a “while loop.”

This method presents some limitations to the functionality of the 
program. First of all, there is a loss of predictability because it is 
impossible to determine when the values of the weights will change. 
In addition, since a car cannot turn around in the middle of the 
road, if a new path is calculated, it will have to travel to the point it 
was initially going towards before a new path can be implemented.

Problems 6. Personalized Path 
The users should be able to personalize the path finder. People 
prefer certain types of roads over others, such as scenic roads along 
the coastline rather than roads that go through alleyways, or travel 
by bus rather than transit by subway. The path should be able to 
fit itself to the optimalities so that preferred roads are maximized. 
Simply put, based on the input of optimal types of roads, optimal 
paths should change. 

Since it is possible for a path to grow interminably long if it chooses 
to prioritize going through optimal types of roads, an upper bound 
is set before a path is calculated by running the normal Dijkstra
Algorithm. This shortest path will be multiplied by a factor of 1.25 
and set as the upper limit. As a result, paths will be deleted as soon 
as their distance goes over more than 25% of the minimal possible 
distance.

Within this limitation, types of roads will be “ranked” based upon 
the input of the user so that a smaller number indicates a greater 
preference. The preference score will be set as a second parameter 
that will be minimized during the construction of the path. If it 
were the case that bigger scores represented greater preference 
and the purpose had been to maximize the preference score, 
constructing an algorithm would not nearly be possible because 
maximizing distance of a path is an unsolved NP-Hard Problem. [5]

It is important to note that a problem occurs when the method 
of adding preference scores is recruited, because it can cause 
unpreferred roads to be chosen over preferred roads in some 
cases where the unpreferred path actually ends up with a lower 
preference score. For example, let’s say road type 1 has a score of 1 
and road type 2 has a score of 2. In getting from point A to B, there 
is a path that only uses type 1 roads and another that only uses 
type 2 roads. However, there are 8 short type 1 roads compared to 
just 3 long type 2 roads. Therefore, even if the distance is the same 
and the former should obviously be the intended result, the type 2 

Figure 4: Seoul subway map [4]

Figure 4: Seoul subway map [4]
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roads are chosen because they have a combined score of 6, which is 
lower than the score of 8.

In response to this issue, a solution is to multiply the distance by 
the preference score. As a result, there is a weight that is added 
to the score themselves. Longer distances will cover for the fact 
that less roads need to be taken. For the depicted example, the 
type 2 roads will now have a score is much higher, because each 
of the roads are longer.As a result of the algorithm, the user will 
be presented with several options that fit the upper limit and 
maximize preferred roads.

Using for-loop and priority queue variations of the Dijkstra 
Algorithm, as well as manipulating the density of the graph through 
numerous examples, I was able to inspect the most efficient 
combination of methods for each case. As predicted through 
theoretical calculations of time complexity, it was discovered that 
the denser the graph, the more efficient a for-loop method was; 
vice versa, the sparser the graph, the more efficient a priority queue 
method was.  

In addition, I modified the Dijkstra’s Algorithm to create an 
algorithm that fits the needs of each path problem. Using such 
algorithms, I was able to confirm full functionality for each example.

Finally, if I had the chance, I think it would be very interesting to 
delve deeper into the real-time updates pertinent to problem 5. As 
of now, every time an update is needed, the Dijkstra’s Algorithm is 
rerun. It would be a noteworthy accomplishment to discover a way 
to decrease the time complexity and I anticipate that such a method
could be applied in many other problems.

5.1. adjacency list + for loop 
from heapq import *

INF = 10**10
vertexNum, edgeNum = input().split()
vertexNum, edgeNum = int(vertexNum), int(edgeNum)

### Input #######################################

[1] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; 
Stein, Clifford (2001), Introduction To Algorithms (2nd ed.), MIT 
Press, p. 599-602

[2] Graph representation, CS Academy
URL https://csacademy.com/lesson/graph_representation/

[3] Seoul Metro  Subway map data of.
URL https://data.seoul.go.kr/dataList/OA-15442/S/1
datasetView.do

[4] Seoul Subway Map
URL http://seoulsublet.com/subway-metro-map/

[5] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; 
Stein, Clifford (2001), Introduction To Algorithms (2nd ed.), MIT 
Press, p. 978

4. CONCLUSION

5. REFERENCES

6. APPENDIX

# adjacency list:
# vertex id should be an integer between 1 ~ V
#################################################
adj = [[] for _ in range(vertexNum+1)]
for i in range(edgeNum):
    a, b, w = [int(i) for i in input().split()]

    adj[a].append((b, w))
    adj[b].append((a, w))

startVertex = int(input())

### Dijkstra’s algorithm ########################
# Using adjacency list + for loop
#################################################

dist = [INF] * (vertexNum+1)
visited = [False] * (vertexNum+1)

dist[startVertex] = 0

while True:
    curDist = INF

    for v in range(vertexNum):
        if not visited[v] and dist[v] < curDist:
            cur = v
            curDist = dist[v]

    if curDist == INF:
        break

    visited[cur] = True
    for nxt, w in adj[cur]:
        nxtDist = curDist + w
        if nxtDist < dist[nxt]:
            dist[nxt] = nxtDist 

5.2. adjacency list + priority queue 
from heapq import *

INF = 10**10
vertexNum, edgeNum = input().split()
vertexNum, edgeNum = int(vertexNum), int(edgeNum)

### Input #######################################
# adjacency list:
# vertex id should be an integer between 1 ~ V
#################################################
adj = [[] for _ in range(vertexNum+1)]
for i in range(edgeNum):
    a, b, w = [int(i) for i in input().split()]

    adj[a].append((b, w))
    adj[b].append((a, w))

startVertex = int(input())

### Dijkstra’s algorithm ########################
# Using priority queue + adjacency list
#################################################
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dist = [INF] * (vertexNum+1)
pq = []

dist[startVertex] = 0
heappush(pq, (0, startVertex))

while pq:
    curDist, cur = heappop(pq)

    if curDist > dist[cur]:
        continue
    
    for nxt, w in adj[cur]:
        nxtDist = curDist + w
        if nxtDist < dist[nxt]:
            dist[nxt] = nxtDist
            heappush(pq, (nxtDist, nxt))
  
5.3. adjacency matrix + for loop 
from heapq import *

INF = 10**10
vertexNum, edgeNum = input().split()
vertexNum, edgeNum = int(vertexNum), int(edgeNum)

### Input #######################################
# adjacency matrix:
# vertex id should be an integer between 1 ~ V
#################################################
adj = [[INF]*(vertexNum+1) for _ in range(vertexNum+1)]
for i in range(edgeNum):
    a, b, w = [int(i) for i in input().split()]

    adj[a][b] = adj[b][a] = w

startVertex = int(input())

### Dijkstra’s algorithm ########################
# Using adjacency matrix + for loop
#################################################

dist = [INF] * (vertexNum+1)
visited = [False] * (vertexNum+1)

dist[startVertex] = 0

while True:
    curDist = INF

    for v in range(vertexNum):
        if not visited[v] and dist[v] < curDist:
            cur = v
            curDist = dist[v]

    if curDist == INF:
        break

    visited[cur] = True
    for nxt in range(1, vertexNum+1):
        w = adj[cur][nxt]
        nxtDist = curDist + w

        if nxtDist < dist[nxt]:
            dist[nxt] = nxtDist
  
5.4. adjacency matrix + priority queue 
from heapq import *

INF = 10**10
vertexNum, edgeNum = input().split()
vertexNum, edgeNum = int(vertexNum), int(edgeNum)

### Input #######################################
# adjacency matrix:
# vertex id should be an integer between 1 ~ V
#################################################
adj = [[INF]*(vertexNum+1) for _ in range(vertexNum+1)]
for i in range(edgeNum):
    a, b, w = [int(i) for i in input().split()]

    adj[a][b] = adj[b][a] = w

startVertex = int(input())

### Dijkstra’s algorithm ########################
# Using priority queue + adjacency matrix
#################################################

dist = [INF] * (vertexNum+1)
pq = []

dist[startVertex] = 0
heappush(pq, (0, startVertex))

while pq:
    curDist, cur = heappop(pq)

    if curDist > dist[cur]:
        continue
    
    for nxt in range(1, vertexNum+1):
        w = adj[cur][nxt]
        nxtDist = curDist + w
        if nxtDist < dist[nxt]:
            dist[nxt] = nxtDist
            heappush(pq, (nxtDist, nxt))


