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Abstract  

The paper introduces different forms of representing complex numbers; standard form and polar form. 

Each has its own pros and cons, and each can be applied in different situations. The paper focuses on 

polar form and shows how it can be applied for finding out factor-square property(FSP) polynomials. 

Modular arithmetic is also required for finding FSP polynomials so that the paper explains about basics 

of modular arithmetic as well. 

 

Standard Form 

The numbers that people are most familiar with 

are real numbers. Based on the characteristics 

of real numbers, it is known that negative 

numbers don’t have real square roots as a square 

is either positive or 0. However, mathematicians 

created the symbol 𝑖 to represent a number 

whose square is -1. An imaginary number is 

defined as a real number multiplied by the 

imaginary unit 𝑖. 

𝑖 = √−1 

A complex number in standard form has two 

parts: the real part and the imaginary part. 

Every complex number can be expressed as the 

form 𝑎 + 𝑏𝑖, where 𝑎, 𝑏 ∈ ℝ. We often use 𝑧 as  

 

 

a variable to represent complex numbers, rather 

than x or y that are typically used to express real 

numbers. 

𝑧 = 𝑎 + 𝑏𝑖 

In real numbers, a conjugate is created by 

altering the sign of two binomial expressions. 

The conjugate of 𝑥 + 𝑦, for example, is 𝑥 − 𝑦. 

The two binomials are conjugates of each other. 

This is similar for complex numbers. Let 𝑧 = 𝑎 

+ 𝑏𝑖. Then, 𝑎 − 𝑏𝑖 is the conjugate of 𝑧, referred 

as 𝑧. 

𝑧 = 𝑎 − 𝑏𝑖 

A complex number can be plotted on the 



complex plane where the horizontal axis is for 

the real part, and the vertical axis is for the 

imaginary part. The complex plane acts very 

similar to the Cartesian plane. Plotting the 

complex number 𝑎 + 𝑏𝑖 is the same as plotting 

(𝑎, 𝑏) in the Cartesian plane. The horizontal 

axis is often labeled as 𝑅𝑒 and the vertical axis 

is often labeled as 𝐼𝑚. 

For a complex number 𝑧 = 𝑎 + 𝑏𝑖, the absolute 

value of 𝑧 can be represented as |𝑧|, This 

expression is defined as the distance from 𝑧 to 

the origin in the complex plane. We can find 

the value by using the Pythagorean Theorem. 

Referring to the diagram below, we can know 

that |𝑧| 

= √𝑎2 + 𝑏2. 

 

Polar Form 

The most common method to plot a point on 

the Cartesian plane is to use 𝑥-coordinates and 

𝑦- coordinates. However, this is not the only 

method. Polar coordinates use direction and 

distance to identify the location of a point in 

the Cartesian plane. Polar coordinates consist 

of two coordinates: the r-coordinate and the 𝜃-

coordinate. The 𝑟- coordinate is the distance 

from the origin to the point, while the 𝜃 - 

coordinate is used the same way in 

trigonometry. For example, a point with 𝜃 = 0° 

is directly to the right of the origin, and a point 

with 𝜃 = 90° is directly above the origin. 

 

Polar coordinates are used to create a polar form 

of a complex number. Polar form is another way 

to represent complex numbers. 

Conversion between Standard form and Polar 

form 

Every complex number in standard form, 𝑎 + 

𝑏𝑖, can be written in the polar form 𝑟(𝑐𝑜𝑠 𝜃 + 𝑖 

sin 𝜃), where 𝑟 ≥ 0. In 𝑧 = 𝑎 + 𝑏𝑖. By using the 

Pythagorean’s Theorem, we can know that the 

distance from the point 𝑧 to the origin, 𝑟, is 

equal to √𝑎2 + 𝑏2. By using the trigonometric 

ratios, we can know that 𝑐𝑜𝑠 𝜃 = 𝑎/𝑟 and 𝑠𝑖𝑛 𝜃 

= 𝑏/r, where 𝜃 is the angle indicated in the 

diagram above. To get the value of 𝜃, you need 

to solve  



𝑡𝑎𝑛−1(𝑏/𝑎), as tan 𝜃 =𝑏 . By 𝑎 multiplying the 

two equations by r, we get 𝑟 𝑐𝑜𝑠 𝜃 = 𝑎 and 𝑟 𝑠𝑖𝑛 

𝜃 = 𝑏. Since 𝑧 = 𝑎 + 𝑏𝑖, 𝑧 =𝑟𝑐𝑜𝑠 𝜃 + 𝑖𝑟𝑠𝑖𝑛 𝜃. 

This is why every complex number can be 

written in the form 𝑟(𝑐𝑜𝑠 𝜃 + 𝑖 sin 𝜃). The 

quantity 𝑐𝑜𝑠 𝜃 + 𝑖 sin 𝜃 is often abbreviated as 

𝑐𝑖𝑠 𝜃. Here is one example showing the 

conversion from standard form to polar form of 

a complex number: 

Let 𝑧 = 1 + 𝑖. 𝑧 in polar form would be 

 

To convert polar form to standard form, just 

evaluate trigonometric values simplify. One 

example of showing the conversion from polar 

from to standard form of a complex number: 

 

𝑧 in polar form would be 

 

and 𝑠𝑖𝑛 7𝜋/6 = -1/2 

Addition and Subtraction of Complex 

Numbers 

Just like addition and subtraction between real 

numbers, we can perform arithmetic operations 

on complex numbers. Let 𝑧 = 𝑎 + 𝑏𝑖 and 𝑤 = 𝑐 

+ 𝑑𝑖. Here is the process of adding and 

subtracting these two complex numbers. 

𝑧 + 𝑤 = (𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖 

𝑧 − 𝑤 = (𝑎 + 𝑏𝑖) − (𝑐 + 𝑑𝑖) = (𝑎 − 𝑐) + (𝑏 − 𝑑)𝑖 

Let 𝑧 = 3 + 4𝑖, 𝑤 = 2 + 𝑖. Here is one example 

for addition and subtraction using standard 

form: 

𝑧 + 𝑤 = (3 + 4𝑖) + (2 + 𝑖) = (3 + 2) + (4 + 1)𝑖 = 5 + 5𝑖 

𝑧 − 𝑤 = (3 + 4𝑖) − (2 + 𝑖) = (3 − 2) + (4 − 1)𝑖 = 1 + 3𝑖 

 

Here is one example for addition and 

subtraction using polar form: 

 

There are advantages and disadvantages for 

using standard form and polar form of complex 

numbers, respectively. Addition and 

subtraction between complex numbers is better 

using standard form because you just need to 

simply add the real parts added together to form 

the real part of the sum, and the imaginary parts 

to form the imaginary part of the sum. On the 

other hand, addition and subtraction using 

polar form is harder because trigonometric 

values need to be calculated. 

Multiplication and Division of Complex 

Numbers 

So why do we use polar form when you are more 

familiar with representing complex numbers in 

standard form? One reason is that it is easy to 

multiply and divide complex numbers with each 

other. Let 𝑧1 = 𝑟1( 𝑐𝑜𝑠 𝜃1 + 𝑖 𝑠𝑖𝑛 𝜃1) = (𝑎 + 𝑏𝑖) 

and 𝑧2 = 𝑟2( 𝑐𝑜𝑠 𝜃2 + 𝑖 𝑠𝑖𝑛 𝜃2) = (𝑐 + 𝑑𝑖). Here is 



the process of multiplying and dividing these 

two complex numbers. 

 

 

 

Here is one example for multiplication and 

division using polar form: 

 

Let 𝑧 = 𝑎 + 𝑏𝑖, 𝑤 = 𝑐 + 𝑑𝑖. Here is the process of 

multiplying and dividing these two complex 

numbers in standard form. 

 

Let 𝑤1 = 5 + 7𝑖, 𝑤2 = 8 − 3𝑖. Here is one 

example for multiplication and division using 

standard form. 

 

 

 

 

Multiplication of complex numbers in polar 

form is equivalent to multiplying their 

magnitudes and adding their angles, while 

division of complex numbers in polar form is 

equivalent to dividing their magnitudes and 

subtracting their angles. On the other hand, 

multiplying and dividing using standard form is 

harder because we need to perform complex 

algebra to expand and simplify expressions. 

Therefore, using polar form when multiplying 

and dividing complex numbers is a more 

efficient method than using standard form. 

De Moivre’s Theorem with Inductive Proof 

When is polar form of a complex number 

useful? The polar form is especially useful when 

we’re working with powers and roots of a 

complex number. A theorem called “De 

Moivre’s Theorem” facilitates the process of 

finding the powers and roots of complex 

numbers in complex form. 

This is De Moivre’s Theorem: 

(𝑟(cos 𝜃 + 𝑖 sin 𝜃))𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃) 

 

 



To prove that this equation is true for any 

positive integer n, we need to use induction. 

Induction in mathematical terms is a technique 

used to prove that a statement is true for every 

natural number. Let 𝑛 be a natural number that 

is the variable for the statement you are trying 

to prove. 

 Step 1. Show that the statement works when n 

= 1. Step 2. Assume that the statement works 

when n = k. 

Step 3. Using the hypothesis that is set up for n 

= k, show that the statement works for n = k + 

1. 

This process resembles the “Domino Effect”, 

with step 1 being the first domino and step 2 & 

3 being the next dominos falling. 

When n = 1: (𝑟(cos 𝜃 + 𝑖 sin 𝜃))1 = 𝑟(cos 𝜃 + 𝑖 

sin 𝜃) 

Through the calculations above, we figured out 

that 𝑧1𝑧2 = 𝑟1𝑟2(cos(𝜃1 + 𝜃2) + 

𝑖𝑠𝑖𝑛(𝜃1 + 𝜃2)). 

Therefore, when n = 2: (𝑟(cos 𝜃 + 𝑖 sin 𝜃))2 = 

𝑟2(cos 𝜃 + 𝑖 sin 𝜃) (cos 𝜃 + 𝑖 sin 𝜃) = 

𝑟2(cos( 𝜃 + 𝜃) + isin(𝜃 + 𝜃) = 𝑟2(cos 2𝜃 + isin 2𝜃) 

Assuming that n = k: (𝑟(cos 𝜃 + 𝑖 sin 𝜃))𝑘 = 

𝑟𝑘(cos 𝑘𝜃 + 𝑖 sin 𝑘𝜃), 

When n = k+1: (𝑟(cos 𝜃 + 𝑖 sin 𝜃))𝑘+1 = 𝑟(cos 𝜃 

+ 𝑖 sin 𝜃) × 𝑟𝑘 (cos 𝜃 + 𝑖 sin 𝜃)𝑘 = 

𝑟𝑘+1((cos 𝜃 + 𝑖 sin 𝜃) (cos 𝑘𝜃 + 𝑖 sin 𝑘𝜃)) = 

𝑟𝑘+1(cos( 𝜃 + 𝑘𝜃) + isin( 𝜃 + 𝑘𝜃)) = 

𝑟𝑘+1(cos((𝑘 + 1)𝜃) + isin((𝑘 + 1)𝜃)) 

Therefore, (𝑟(cos 𝜃 + 𝑖 sin 𝜃))𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 

sin 𝑛𝜃) for all positive integers n. 

Nth Roots 

The Fundamental Theorem of Algebra states 

that that every polynomial with degree 𝑛 has 𝑛 

roots. The method of finding the nth root helps 

us find the roots of a polynomial, either real or 

non-real. The equation below is one of the best 

equations to display the method of finding nth 

roots. The number 𝑛 is a positive integer. 

𝑓(𝑥) = 𝑥𝑛 − 1 

When 𝑛 = 3, 

𝑓(𝑥) = 𝑥3 – 1 

If we factor 𝑓(𝑥), we get 𝑓(𝑥) = (𝑥 − 1)(𝑥2 + 𝑥 + 

1). Knowing only one root, we can find the 

other two roots using the quadratic formula. 

The three roots are 1, (−1+√3𝑖)/2 , 

(−1−√3𝑖.)/2 Transforming these roots into 

polar form gives us (𝑐𝑜𝑠0 + 𝑖𝑠𝑖𝑛0),

 

Mapping these roots in the complex plane, we 

get: 

 



Here, we can know that the roots, when 

mapped in a complex plane, are evenly spaced 

out. Why are they evenly spread out? We should 

look at another example of finding nth roots. 

Let 𝑥 = 𝑟 ∗ 𝑐𝑖𝑠 𝜃. 

 

From this, we get two equations: 

 

From equation 1, we can know that 𝑟 = 2, as r 

represents a modulus(magnitude). From 

equation 2, we get 𝜃 = 𝜋/3 + 𝜋𝑛/2. Since we 

know that the total number of roots is four 

through the Fundamental Theorem of Algebra, 

the four roots would be 𝑟𝑐𝑖𝑠 𝜃 = 𝑟𝑐𝑖𝑠 𝜋/3 + 

𝜋𝑛/2. where n is 0, 1, 2, and 3 respectively. The 

four roots are  

 

Since the angle of where the roots are mapped 

in a complex plane increase at a constant rate, 

the roots are evenly spaced when placed in a 

complex plane. 

Let 𝑤𝑛 = 𝑧, where 𝑤, 𝑧 ∈ ℂ , 𝑛 ∈ ℤ+ 

Then, 𝑤𝑛 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃), where 𝜃 ∈ ℝ, 𝑟 ≥ 

0. 

When De Moivre’s Theorem is used 

“backwards”, then we can derive that: 

 

where 𝑘 = 0, 1, 2, ⋯ , 𝑛 – 1 

These roots have the same magnitude 𝑟, but 

differ in their arguments by 2𝜋/𝑛. This means 

that they are equally spaced on the circle with 

radius 𝑟 centered at the origin. 

There are 𝑛 complex numbers that are 𝑛th roots 

of a given complex number. Every root has the 

same modulus 𝑟, but has 𝑛 different arguments. 

Therefore, they are equally spaced complex 

numbers on the circle starting with the original 

argument divided by 𝑛. 

 



Number theory 

Modular arithmetic is a branch of mathematics 

that deals with numbers and their remainders. 

It introduces the concept of a modulus, which 

represents the divisor used in the division 

process. The notation below shows that 𝑎 and 𝑏 

have the same remainder when divided by 

modulus 𝑚. 

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) 

One key property of modular arithmetic is that 

we can perform various operations, such as 

addition, subtraction, multiplication, and 

exponentiation. The properties below are 

examples of uses in modular arithmetic. 

Given that 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) and 𝑐 ∈ ℤ+, 

1.   𝑎 + 𝑐 ≡ 𝑏 + 𝑐(𝑚𝑜𝑑 𝑚) 

2.   𝑎 − 𝑐 ≡ 𝑏 − 𝑐(𝑚𝑜𝑑 𝑚) 

3.   𝑎 × 𝑐 ≡ 𝑏 × 𝑐(𝑚𝑜𝑑 𝑚) 

4. 𝑎𝑐 ≡ 𝑏𝑐(𝑚𝑜𝑑 𝑚) 

 

 

a. Let 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 

𝑎0. By the Fundamental Theorem of 

Algebra, either real or non-real, there 

would be an 𝑛 number of roots of 𝑓(𝑥). Let 

the roots be 𝑥1, 𝑥2, … 𝑥𝑛 .Then, 𝑓(𝑥1) = 

𝑓(𝑥2) = 𝑓(𝑥3) = ⋯ = 0. Since 𝑓(𝑥) is a 

factor of 

𝑓(𝑥2), 𝑓(𝑥2) = 𝑓(𝑥) × 𝑞(𝑥). Since it is given that 

𝑓(𝑥) has the factor-square property, let 𝑥 = 𝑥1, 

and we get 𝑓(𝑥1
2) = 𝑓(𝑥1) = 0. Since 𝑥 = 𝑥1 = 

𝑥2 = 𝑥3 = ⋯ = 𝑥𝑛, 

𝑓(𝑥1
2) = 𝑓(𝑥2

2) = 𝑓(𝑥3
2) = ⋯ 𝑓(𝑥𝑛

2) = 0. 

Therefore, we can say that 

𝑥1
2, 𝑥2

2, 𝑥3
2, … , 𝑥𝑛

2 are roots of the function 

𝑓(𝑥). By the Fundamental Theorem of Algebra, 

𝑓(𝑥) can only have a maximum number of 𝑛 roots. 

Since the roots are 

𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 and 𝑥1
2, 𝑥2

2, 𝑥3
2, … , 𝑥𝑛

2, we 

can say that 𝑥𝑖 = 𝑥𝑗
2. 

b. A monic FSP polynomial of degree 1 can be 

expressed as 𝑓(𝑥) = 𝑥 − 𝑎. Then, 𝑓(𝑥2) = 

𝑥2 − 𝑎 = (𝑥 − 𝑎)𝑞(𝑥). From this, we know that 

the zero of 𝑓(𝑥2) is 𝑥 = 𝑎. By putting in this 

value into the function 𝑓(𝑥2) = 𝑥2 − 𝑎, we 

get 𝑎2 − 𝑎 = 𝑎(𝑎 − 1) = 0. 

Therefore, the only two values of 𝑎 that 

are satisfactory of this equation is 0 and 1. 

Knowing the values of 𝑎, we can say that 𝑥 

and 𝑥 − 1 are the only monic FSP 

polynomials of degree 1. 

 



A monic FSP polynomial of degree 2 can be 

expressed as 𝑓(𝑥) = 𝑥2 + 𝑎𝑥 + 𝑏. 

Then, 𝑓(𝑥2) = 𝑥4 + 𝑎𝑥2 + 𝑏 = (𝑥2 + 𝑎𝑥 + 𝑏)𝑞(𝑥). 

From this, we know that the zeros 

of 𝑓(𝑥2) is 𝑥 = 
(-𝑎+√𝑎2=4𝑏)/2 

, 
(-𝑎−√𝑎2=4𝑏)/2 

However, finding the values of 𝑎 by putting in 

these values into the equation 𝑥4 + 𝑎𝑥2 + 𝑏 = 0 

would be too complicated. Therefore, this 

problem needs to be solved with a different 

approach. 

 

As 𝑥𝑖 = 𝑥𝑗
2, we can let 𝑟𝑐𝑖𝑠𝜃1 = (𝑟𝑐𝑖𝑠𝜃2)2. 

Then, 𝑟𝑐𝑖𝑠𝜃1 = 𝑟2𝑐𝑖𝑠2𝜃2, and 𝑟 = 𝑟2. Therefore, 

𝑟 = 0,1. According to the Fundamental 

Theorem of Algebra, either real or non-real, any 

quadratic function would have two roots. Cases 

can be divided in terms of magnitudes of roots. 

 

1. Both roots have magnitudes of 0: 

This would mean that the two roots 𝑓(𝑥) would 

equal to 0. 𝑓(𝑥) = 𝑥2. 

2. Roots have magnitudes of 0, 1: 

This would mean that the two roots 𝑓(𝑥) would 

equal to 0 and 𝑐𝑖𝑠𝜃, respectively. 

 

𝑐𝑖𝑠𝜃 = 𝑐𝑖𝑠2𝜃 

𝜃 ≡ 2𝜃(𝑚𝑜𝑑 2𝜋) 

−𝜃 ≡ 0(𝑚𝑜𝑑 2𝜋) 

𝜃 ≡ 0(𝑚𝑜𝑑 2𝜋), 

As 𝑐𝑖𝑠0 = 1, the two solutions of 𝑓(𝑥) = 0,1. 

Therefore, 𝑓(𝑥) = 𝑥(𝑥 − 1). 

3. Both roots have magnitudes of 1: 

a) If both roots are real: 

𝑥 = 1,1 or 𝑥 = −1, −1 or 𝑥 = −1,1. 

However, 𝑥 = −1, −1 would not make 𝑓(𝑥) a FSP 

polynomial. (𝑥 + 1)2 is not a factor of (𝑥2 + 1)2. 

∴ 𝑥 = 1,1 or 𝑥 = −1,1. 

b) If both roots are complex conjugates: 

1) 𝑥 = 𝑐𝑖𝑠𝜃 

𝑐𝑖𝑠𝜃 = 

𝑐𝑖𝑠2𝜃 2𝜃 ≡ 

𝜃(𝑚𝑜𝑑 2𝜋) 

𝜃 ≡ 0(𝑚𝑜𝑑 2𝜋) 

𝑥 = 1 

𝑓(𝑥) = (𝑥 − 1)2. 

2) 𝑥 = 𝑐𝑖𝑠(−𝜃) 

𝑐𝑖𝑠(−𝜃) = 𝑐𝑖𝑠2𝜃  

2𝜃 ≡ −𝜃(𝑚𝑜𝑑 2𝜋) 

3𝜃 ≡ 0(𝑚𝑜𝑑 2𝜋) 

By using Vieta’s formula, we know 

that 𝑓(𝑥) = 𝑥2 + 𝑥 + 1. 

c) A monic FSP polynomial of degree 3 can be 

expressed as 𝑓(𝑥) = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐. 

Then, 𝑓(𝑥2) = 𝑥6 + 𝑎𝑥4 + 𝑏𝑥2 + 𝑐 = (𝑥3 + 𝑎𝑥2 + 

𝑏𝑥 + 𝑐)𝑞(𝑥). 

As 𝑥𝑖 = 𝑥𝑗
2, we can let 𝑟𝑐𝑖𝑠𝜃1 = (𝑟𝑐𝑖𝑠𝜃2)2. 

Then, 𝑟𝑐𝑖𝑠𝜃1 = 𝑟2𝑐𝑖𝑠2𝜃2, and 𝑟 = 𝑟2. 

Therefore, 𝑟 = 0,1. According to the 

Fundamental Theorem of Algebra, either 

real or non-real, any cubic function would 

have three roots. Cases can be divided in 

terms of the types of roots. 

1. When 𝑓(𝑥) has three real roots: 

a) When (𝑟1, 𝑟2, 𝑟3) = (−1,1,1), 𝑓(𝑥) = (𝑥 + 1)(𝑥 

− 1)2. As 𝑓(𝑥2) = (𝑥2 + 

1)(𝑥2 − 1)2 = (𝑥2 + 1)(𝑥 + 1)2(𝑥 − 1)2 = 𝑓(𝑥)(𝑥 + 



1)(𝑥2 + 1), 𝑓(𝑥) is a FSP 

polynomial. 

b) When (𝑟1, 𝑟2, 𝑟3) = (−1,1,0), 𝑓(𝑥) = 𝑥(𝑥2 − 1). 

As 𝑓(𝑥2) = 𝑥2(𝑥4 − 1) = 

𝑥2(𝑥2 − 1)(𝑥2 + 1) = 𝑓(𝑥)𝑥(𝑥2 + 1), 𝑓(𝑥) is a FSP 

polynomial. 

c) When (𝑟1, 𝑟2, 𝑟3) = (0,1,1), 𝑓(𝑥) = 𝑥(𝑥 − 1)2. 

As 𝑓(𝑥2) = 𝑥2(𝑥2 − 1)2 = 

𝑥2(𝑥 − 1)2(𝑥 + 1)2 = 𝑓(𝑥) ∙ 𝑥(𝑥 + 1)2, 𝑓(𝑥) is a FSP 

polynomial. 

d) When (𝑟1, 𝑟2, 𝑟3) = (0,1,0), 𝑓(𝑥) = 𝑥2(𝑥 − 1). 

As 𝑓(𝑥2) = 𝑥4(𝑥2 − 1) = 

𝑥4(𝑥 − 1)(𝑥 + 1) = 𝑓(𝑥)𝑥2(𝑥 + 1), 𝑓(𝑥) is a FSP 

polynomial. 

e) When (𝑟1, 𝑟2, 𝑟3) = (0,0,0), 𝑓(𝑥) = 𝑥3. As 𝑓(𝑥2) = 𝑥6 

= 𝑓(𝑥)𝑥3, 𝑓(𝑥) is a FSP polynomial. 

f) When (𝑟1, 𝑟2, 𝑟3) = (1,1,1), 𝑓(𝑥) 

= (𝑥 − 1)3. As 𝑓(𝑥2) = (𝑥2 − 1)3 = 

(𝑥 − 1)3(𝑥 + 1)3 = 𝑓(𝑥)(𝑥 + 1)3, 

𝑓(𝑥) is a FSP polynomial. 

2. When 𝑓(𝑥) has one real root and 

two complex conjugates: 

a) When (𝑟1, 𝑟2, 𝑟3) = (0, 𝑐𝑖𝑠(𝜃), 𝑐𝑖𝑠(−𝜃)): 

𝑖) 2𝜃 ≡ 𝜃(𝑚𝑜𝑑 2𝜋): 

𝜃 ≡ 0(𝑚𝑜𝑑 2𝜋) 

𝜃 = 2𝜋𝑛 

𝜃 = 0 

When 𝜃 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 

excluded as the assumption is “𝑐𝑖𝑠(𝜃) and 𝑐𝑖𝑠(−𝜃) 

are complex conjugates.” 

2𝜃 ≡ −𝜃(𝑚𝑜𝑑 2𝜋): 

3𝜃≡ (𝑚𝑜𝑑2𝜋) 

3𝜃 = 2𝜋𝑛 

𝜃 =  2/3𝜋𝑛             

𝜃 = 0, 2𝜋/3, 4𝜋/3 

• When 𝜃 = 0: 

𝜃 = 0, 2 𝜃 /3, 4 𝜃 /3 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option 

must be excluded as the assumption is 

“𝑐𝑖𝑠(𝜃) and 𝑐𝑖𝑠(−𝜃) are complex conjugates”. 

 

When 𝜃 = 4𝜋/3 

 

When (𝑟1, 𝑟2, 𝑟3) = (1, 𝑐𝑖𝑠(𝜃), 𝑐𝑖𝑠(−𝜃)): 

2𝜃 ≡ 𝜃(𝑚𝑜𝑑 2𝜋): 

When 𝜃 = 0: 

𝜃 ≡ 0(𝑚𝑜𝑑 2𝜋) 

𝜃 = 2𝜋𝑛 

𝜃 = 0 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 

excluded as the assumption is “𝑐𝑖𝑠(𝜃) and 𝑐𝑖𝑠(−𝜃) 

are complex conjugates.” 

 

2. 2𝜃 ≡ −𝜃(𝑚𝑜𝑑 2𝜋): 



 

• When 𝜃 = 0: 
• As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must 

be excluded as the assumption is “𝑐𝑖𝑠(𝜃) and 
𝑐𝑖𝑠(−𝜃) are complex conjugates”. 

 

(b) A monic FSP polynomial of degree 4 can be 

expressed as 𝑓(𝑥) = 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 

𝑐𝑥 + 𝑑. Then, 𝑓(𝑥2) = 𝑥8 + 𝑎𝑥6 + 𝑏𝑥4 + 𝑐𝑥2 

+ 𝑑 = (𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑)𝑞(𝑥). 

As 𝑥𝑖 = 𝑥𝑗
2, we can let 𝑟𝑐𝑖𝑠𝜃1 = 

(𝑟𝑐𝑖𝑠𝜃2)2. Then, 𝑟𝑐𝑖𝑠𝜃1 = 𝑟2𝑐𝑖𝑠2𝜃2, 

and 𝑟 = 𝑟2. Therefore, 𝑟 = 0,1. According 

to the Fundamental Theorem of 

Algebra, either real or non-real, any cubic 

function would have three roots. Cases 

can be divided in terms of the types of 

roots. 

 

1. When 𝑓(𝑥) has four real roots: 

a) When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = 

(1,1,1,1), 𝑓(𝑥) = (𝑥 − 1)4. As 

𝑓(𝑥2) = (𝑥2 − 1)4 = (𝑥 + 1)4(𝑥 

− 1)4 = 𝑓(𝑥) ∙ (𝑥 + 1)4, 𝑓(𝑥) 

is a FSP polynomial. 

b) When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (1,1,1, −1), 𝑓(𝑥) = (𝑥 

− 1)3(𝑥 + 1). As 𝑓(𝑥2) = (𝑥2 − 1)3(𝑥2 + 1) = 

(𝑥 + 1)3(𝑥 − 1)3(𝑥2 + 1) = 𝑓(𝑥) ∙ (𝑥 + 1)2(𝑥2 

+ 1), 𝑓(𝑥) is a FSP polynomial. 

c) When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (1,1,1,0), 𝑓(𝑥) = 

𝑥(𝑥 − 1)3. As 𝑓(𝑥2) = 𝑥2(𝑥2 − 1)3 = 

𝑥2(𝑥 + 1)3(𝑥 − 1)3 = 𝑓(𝑥) ∙ 𝑥(𝑥 + 1)3, 𝑓(𝑥) is a 

FSP polynomial. 

When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (1,1, −1, −1), 𝑓(𝑥) = (𝑥 − 

1)2(𝑥 + 1)2. As 𝑓(𝑥2) = 

(𝑥2 − 1)2(𝑥2 + 1)2 = (𝑥 + 1)2(𝑥 − 1)2(𝑥2 + 1)2 = 

𝑓(𝑥) ∙ (𝑥2 + 1)2, 𝑓(𝑥) is a FSP 

polynomial. 

e) When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (1,1, −1,0), 𝑓(𝑥) = 𝑥(𝑥 

+ 1)(𝑥 − 1)2. As 𝑓(𝑥2) = 

𝑥2(𝑥2 + 1)(𝑥2 − 1)2 = 𝑥2(𝑥2 + 1)(𝑥 + 1)2(𝑥 − 1)2 = 

𝑓(𝑥) ∙ 𝑥(𝑥2 + 1)(𝑥 + 1), 𝑓(𝑥) 

is a FSP polynomial. 

f) When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (1,1,0,0), 𝑓(𝑥) 

= 𝑥2(𝑥 − 1)2. As 𝑓(𝑥2) = 𝑥4(𝑥2 − 1)2 = 

𝑥4(𝑥 + 1)2(𝑥 − 1)2 = 𝑓(𝑥) ∙ 𝑥2(𝑥 + 1)2, 𝑓(𝑥) is a 

FSP polynomial. 

g) When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (1, −1,0,0), 𝑓(𝑥) = 

𝑥2(𝑥 + 1)(𝑥 − 1). As 𝑓(𝑥2) = 𝑥4(𝑥2 + 1)(𝑥2 − 

1) = 𝑥4(𝑥2 + 1)(𝑥 + 1)(𝑥 − 1) = 𝑓(𝑥) ∙ 𝑥2(𝑥2 + 

1), 𝑓(𝑥) is a FSP polynomial. 

h) When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (1,0,0,0), 𝑓(𝑥) = 𝑥3(𝑥 − 

1). As 𝑓(𝑥2) = 𝑥6(𝑥2 − 1) = 𝑥6(𝑥 + 1)(𝑥 − 1) = 

𝑓(𝑥) ∙ 𝑥3(𝑥 + 1), 𝑓(𝑥) is a FSP polynomial. 

i) When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (0,0,0,0), 𝑓(𝑥) = 𝑥4. 

As 𝑓(𝑥2) = 𝑥8 = 𝑓(𝑥) ∙ 𝑥4, 𝑓(𝑥) is a FSP 

polynomial. 

 



2. When 𝑓(𝑥) has two real roots and two complex 

conjugates: 

a) When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (0, 0, 𝑐𝑖𝑠(𝜃), 𝑐𝑖𝑠(−𝜃)): 

𝑖) 2𝜃 ≡ 𝜃(𝑚𝑜𝑑 2𝜋): 

𝜃 ≡ 0(𝑚𝑜𝑑 2𝜋) 

𝜃 = 2𝜋𝑛 

𝜃 = 0 

When 𝜃 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 

excluded as the assumption is “𝑐𝑖𝑠(𝜃) and 

𝑐𝑖𝑠(−𝜃) are complex conjugates.” 

 

ii) 2𝜃 ≡ −𝜃(𝑚𝑜𝑑 2𝜋): 

 

When 𝜃 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option mu
st be excluded as the assumption is “𝑐𝑖𝑠(𝜃) a
nd 𝑐𝑖𝑠(−𝜃) are complex conjugates”. 

 

 

When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (0, 1, 𝑐𝑖𝑠(𝜃), 𝑐𝑖𝑠(−𝜃)): 

𝑖) 2𝜃 ≡ 𝜃(𝑚𝑜𝑑 2𝜋): 

𝜃 ≡ 0(𝑚𝑜𝑑 2𝜋) 

𝜃 = 2𝜋𝑛 

𝜃 = 0 

When 𝜃 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must 

be excluded as the assumption is “𝑐𝑖𝑠(𝜃) and 

𝑐𝑖𝑠(−𝜃) are complex conjugates.” 

2𝜃 ≡ −𝜃(𝑚𝑜𝑑 2𝜋): 

 

 

When 𝜃 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 

excluded as the assumption is “𝑐𝑖𝑠(𝜃) and 

𝑐𝑖𝑠(−𝜃) are complex conjugates”. 

 

When (𝑟1, 𝑟2, 𝑟3, 𝑟4) = (1, 1, 𝑐𝑖𝑠(𝜃), 𝑐𝑖𝑠(−𝜃)): 

2𝜃 ≡ 𝜃(𝑚𝑜𝑑 2𝜋): 

𝜃 ≡ 0(𝑚𝑜𝑑 2𝜋) 

𝜃 = 2𝜋𝑛 

𝜃 = 0 

When 𝜃 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 



excluded as the assumption is “𝑐𝑖𝑠(𝜃) and 

𝑐𝑖𝑠(−𝜃) are complex conjugates.” 

 

2𝜃 ≡ −𝜃(𝑚𝑜𝑑 2𝜋): 

 

When 𝜃 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 

excluded as the assumption is “𝑐𝑖𝑠(𝜃) and 

𝑐𝑖𝑠(−𝜃) are complex conjugates”. 

 

 

When 𝑓(𝑥) has four complex conjugates: 

(𝑟1, 𝑟2, 𝑟3, 𝑟4) = (𝑐𝑖𝑠(𝜃1), 𝑐𝑖𝑠(−𝜃1), 

𝑐𝑖𝑠(𝜃2), 𝑐𝑖𝑠(−𝜃2)): 

𝑖) 2𝜃1 ≡ 𝜃1(𝑚𝑜𝑑 2𝜋): 

𝜃1 ≡ 0(𝑚𝑜𝑑 2𝜋) 

𝜃1 = 2𝜋𝑛 

𝜃1 = 0 

 
When 𝜃1 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 

excluded as the assumption is “𝑐𝑖𝑠(𝜃1) and 

𝑐𝑖𝑠(−𝜃1) are complex conjugates.” 

 

2𝜃1 ≡ −𝜃1(𝑚𝑜𝑑 2𝜋): 

 

When 𝜃1 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 

excluded as the assumption is “𝑐𝑖𝑠(𝜃1) and 

𝑐𝑖𝑠(−𝜃1) are complex conjugates.” 

 

2𝜃1 ≡ 𝜃2(𝑚𝑜𝑑 2𝜋): 

4𝜃1 ≡ 𝜃1(𝑚𝑜𝑑 2𝜋), −𝜃1(𝑚𝑜𝑑 2𝜋), 2𝜃1(𝑚𝑜𝑑 

2𝜋), −2𝜃1(𝑚𝑜𝑑 2𝜋) 

𝜃1 ≡ 0(𝑚𝑜𝑑 2𝜋) 

𝜃1 = 2𝜋𝑛 

𝜃1 = 0 

 

When 𝜃1 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 

excluded as the assumption is “𝑐𝑖𝑠(𝜃1) and 



𝑐𝑖𝑠(−𝜃1) are complex conjugates.” 

 

2𝜃1 ≡ −𝜃1(𝑚𝑜𝑑 2𝜋): 

 

When 𝜃1 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 

excluded as the assumption is “𝑐𝑖𝑠(𝜃1) and 

𝑐𝑖𝑠(−𝜃1) are complex conjugates.” 

 

2𝜃1 ≡ 𝜃2(𝑚𝑜𝑑 2𝜋): 

4𝜃1 ≡ 𝜃1(𝑚𝑜𝑑 2𝜋), −𝜃1(𝑚𝑜𝑑 2𝜋), 2𝜃1(𝑚𝑜𝑑 

2𝜋), −2𝜃1(𝑚𝑜𝑑 2𝜋) 

When 4𝜃1 ≡ 𝜃1(𝑚𝑜𝑑 2𝜋): 

3𝜃1 ≡ 0(𝑚𝑜𝑑 2𝜋) 

3𝜃1 = 2𝜋𝑛 

𝜃1 = 
3 

𝜋𝑛 

 

When 𝜃1 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 

excluded as the assumption is “𝑐𝑖𝑠(𝜃1) and 

𝑐𝑖𝑠(−𝜃1) are complex conjugates.” 

 

 

When 4𝜃1 = −𝜃1(𝑚𝑜𝑑 2𝜋): 

 

When 𝜃1 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must be 

excluded as the assumption is “𝑐𝑖𝑠(𝜃1) and 

𝑐𝑖𝑠(−𝜃1) are complex conjugates.” 

 

When 4𝜃1 = 2𝜃1(𝑚𝑜𝑑 2𝜋): 

 



When 𝜃1 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must 

be excluded as the assumption is “𝑐𝑖𝑠(𝜃1) and 

𝑐𝑖𝑠(−𝜃1) are complex conjugates”. 

When 𝜃1 = 𝜋: 

(𝑟1, 𝑟2, 𝑟3, 𝑟4) = (𝑐𝑖𝑠(𝜋), 𝑐𝑖𝑠(−𝜋), 𝑐𝑖𝑠(2𝜋), 

𝑐𝑖𝑠(−2𝜋)). 

𝑓(𝑥) = (𝑥2 − 2𝑥cos(𝜋) + 1)(𝑥2 − 2𝑥cos(2𝜋) + 1) 

= (𝑥2 + 2𝑥 + 1)(𝑥2 + 2𝑥 + 1) = 𝑥4 + 4𝑥3 + 6𝑥2 + 

4𝑥 + 1. 

 

When 4𝜃1 = −2𝜃1(𝑚𝑜𝑑 2𝜋): 

 

 

When 𝜃1 = 0: 

As 𝑐𝑖𝑠(0) and 𝑐𝑖𝑠(−0) is real, this option must 

be excluded as the assumption is “𝑐𝑖𝑠(𝜃1) and 

𝑐𝑖𝑠(−𝜃1) are complex conjugates”. 

When 𝜃1 = 𝜋/3: 

 

 
 


