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Abstract

The paper introduces different forms of representing complex numbers; standard form and polar form.
Each has its own pros and cons, and each can be applied in different situations. The paper focuses on
polar form and shows how it can be applied for finding out factorsquare property(FSP) polynomials.

Modular arithmetic is also required for finding FSP polynomials so that the paper explains about basics

of modular arithmetic as well.

Standard Form

The numbers that people are most familiar with
are real numbers. Based on the characteristics
of real numbers, it is known that negative
numbers don’t have real square roots as a square
is either positive or 0. However, mathematicians
created the symbol i to represent a number
whose square is -1. An imaginary number is
defined as a real number multiplied by the

imaginary unit i.
i=v-1

A complex number in standard form has two
parts: the real part and the imaginary part.
Every complex number can be expressed as the

form a + bi, where a, b € R. We often use z as

a variable to represent complex numbers, rather
than x or y that are typically used to express real

numbers.
z=a+ bi

In real numbers, a conjugate is created by
altering the sign of two binomial expressions.
The conjugate of x + y, for example, is x — y.
The two binomials are conjugates of each other.
This is similar for complex numbers. Let z = a
+ bi. Then, a — bi is the conjugate of z, referred

as Z.
z=a— bi

A complex number can be plotted on the




complex plane where the horizontal axis is for
the real part, and the vertical axis is for the
imaginary part. The complex plane acts very
similar to the Cartesian plane. Plotting the
complex number a + bi is the same as plotting
(a, b) in the Cartesian plane. The horizontal
axis is often labeled as Re and the vertical axis

is often labeled as Im.

For a complex number z = a + bi, the absolute
value of z can be represented as |z|, This
expression is defined as the distance from z to
the origin in the complex plane. We can find
the value by using the Pythagorean Theorem.

Referring to the diagram below, we can know

that | z|
=+a2 + b2.
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Polar Form

The most common method to plot a point on
the Cartesian plane is to use X-coordinates and
y- coordinates. However, this is not the only
method. Polar coordinates use direction and
distance to identify the location of a point in

the Cartesian plane. Polar coordinates consist

of two coordinates: the r-coordinate and the 6-
coordinate. The 7- coordinate is the distance
from the origin to the point, while the 6 -
coordinate is wused the same way in
trigonometry. For example, a point with 8 = 0°
is directly to the right of the origin, and a point

with 8 = 90° is directly above the origin.
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Polar coordinates are used to create a polar form
of a complex number. Polar form is another way

to represent complex numbers.

Conversion between Standard form and Polar

form

Every complex number in standard form, a +
bi, can be written in the polar form r(cos 6 + i
sin @), where 7 > 0. In z = a + bi. By using the
Pythagorean’s Theorem, we can know that the
distance from the point z to the origin, 7, is
equal to Va2 + b2. By using the trigonometric
ratios, we can know that cos 8 = a/r and sin 8
= b/r, where 0 is the angle indicated in the
diagram above. To get the value of 8, you need

to solve



tan—1(b/a), as tan 6 =b . By a multiplying the
two equations by r, we get 7 cos 6 = a and r sin
0 = b. Since z = a + bi, z =rcos 0 + irsin 0.
This is why every complex number can be
written in the form r(cos @ + i sin 6). The
quantity cos 6 + i sin 0 is often abbreviated as
cis 6. Here is one example showing the
conversion from standard form to polar form of

a complex number:
Let z=1 +i. z in polar form would be

V2 (cos” +isin)asr =12+ 12 = V2and 0 =ran—1(i) =z
4 4 1 4

To convert polar form to standard form, just
evaluate trigonometric values simplify. One
example of showing the conversion from polar

from to standard form of a complex number:
Let z = 3 (cos “ + isin ).
6 6

Z in polar form would be

and sin /6 =-1/2

Addition and Subtraction of Complex

Numbers

Just like addition and subtraction between real
numbers, we can perform arithmetic operations
on complex numbers. Let z=a + biand w = ¢
+ di. Here is the process of adding and

subtracting these two complex numbers.
z+w=(@+bi)+(c+di)=(a+c)+(b+di

z—w=(@+bi)—(c+di)=(a—c)+(b—d)i

Let z=3 + 4i, w = 2 + i. Here is one example
for addition and subtraction using standard

form:
z+w=0C+4D)+Q2+)=3+2)+@+1i=5+5i

z-w=03+4)-Q2+)=03-2)+@l-1i=1+3i
Let z = 2(cosf+f5m ), w = (cos= + isin ),
4 4 6 6

Here is one example for addition and

subtraction using polar form:

T b w T n i'[ m w
zZ+w=2 (r:r:w7l + Lsm—d) + (cosE;— (smg) = (ZCDSI+ cosgj + (2$mi+5m g):

Y4 )
= (\/2+7)+(v’5+5)¢

m m s m m T m m
z—w=2 (c'usz + :smz) — (cos E:— (smg) = (2cos 7 Cos E) + (2sin Fsin g):

=(2- ‘f;) + (V2 -2
There are advantages and disadvantages for
using standard form and polar form of complex
numbers,  respectively.  Addition  and
subtraction between complex numbers is better
using standard form because you just need to
simply add the real parts added together to form
the real part of the sum, and the imaginary parts
to form the imaginary part of the sum. On the
other hand, addition and subtraction using

polar form is harder because trigonometric

values need to be calculated.

Multiplication and Division of Complex

Numbers

So why do we use polar form when you are more
familiar with representing complex numbers in
standard form? One reason is that it is easy to
multiply and divide complex numbers with each
other. Let z, = r( cos 6, + i sin 6,) = (a + bi)

and z, = 7,( cos 0, + i sin 8,) = (¢ + di). Here is



the process of multiplying and dividing these

two complex numbers.

z1Zy = ryra(cos 01 + isin6)(cos 8z + isinB3)

=ryra((cos 8y cos 8, — sin 0y sin 8;) + i(cos 0y sin 8 + cos B sin 84))
=rira(cos(8y + 02) + isin(6; + 62))

==rirocis(0y + 032)

zy  ri(cos8y+ isindy) ri(coshy+ isinb,)(cosB;— isinb;)

z  r(cosf + isinB)zr(cosﬁ' + isinf ) cos® — isin8)
2 2 2 2 2 2 2 2 2

r1( cos 64 cos 8, + sin 6, sin 8;) + i( sin 6, cos 8, — cos B, sin 6;)

r(cos?@ + sin? @)
2 2 H

_n (cos(6 — @ )+ isin(f —8))
1 2 1 2
T2
T
= —-6)
cis(@

- 1 2

T n n ks
letwi=6(cos ;+ ist -),w2=2(cos -+ ish )

Here is one example for multiplication and

division using polar form:

Tom 5m
wiwy = 6 X 2 cis (4—+ E) =12 cis (ﬁ)
S T T I

wp . X cis (;— ;) =3 cis (12)

2

Let z=a + bi, w = ¢ + di. Here is the process of
multiplying and dividing these two complex

numbers in standard form.

21z = (a + bi)(c + di) = ac + adi + bei + bdi* = (ac — bd) + (ad + be)i

z1_ (a+bi) (a +bi)(c —di) (ﬂffﬂdi+bff+bd)7 (ac + bd) + (bc — ad)i
7 (c+di) (c+di)(c—di) cta? B o+ d?
2 )7 L({!C + bEIS (bc)— ad)

NGETMGET LR

Let wl = 5 + 7i, w2 = 8 — 3i. Here is one
example for multiplication and division using

standard form.

wiwz = (5 + 70)(8 — 3i)
= 40 — 15i + 56i — 21i2
=61+ 41i

wy  5+7i  (5+70)(8+30)

w, 8-30 (8—=30)(8+30)

40 + 15i + 56i + 21i2
N 64+ 9

19+ 71 19 71

73 73t 73!

Multiplication of complex numbers in polar

form is equivalent to multiplying their
magnitudes and adding their angles, while
division of complex numbers in polar form is
equivalent to dividing their magnitudes and
subtracting their angles. On the other hand,
multiplying and dividing using standard form is
harder because we need to perform complex
algebra to expand and simplify expressions.
Therefore, using polar form when multiplying

and dividing complex numbers is a more

efficient method than using standard form.
De Moivre’s Theorem with Inductive Proof

When is polar form of a complex number
useful? The polar form is especially useful when
we're working with powers and roots of a
complex number. A theorem called “De
Moivre’s Theorem” facilitates the process of
finding the powers and roots of complex

numbers in complex form.
This is De Moivre’s Theorem:

(r(cos @ + i sin B))r = r*(cos nf + i sin nb)



To prove that this equation is true for any
positive integer n, we need to use induction.
Induction in mathematical terms is a technique
used to prove that a statement is true for every
natural number. Let n be a natural number that
is the variable for the statement you are trying

to prove.

Step 1. Show that the statement works when n
= 1. Step 2. Assume that the statement works

when n = k.

Step 3. Using the hypothesis that is set up for n
=k, show that the statement works for n = k +

1.

This process resembles the “Domino Effect”,
with step 1 being the first domino and step 2 &

3 being the next dominos falling.

When n = 1: (r(cos @ + i sin 8))1 = r(cos 8 + i
sin @)

Through the calculations above, we figured out

that z,z, = r7y(cos(8, + 6,) +
isin(0, + 68,)).

Therefore, when n = 2: (r(cos 8 + i sin 0))* =

75(cos 8 + i sin 6) (cos 6 + i sin B) =
15(cos( @ + ) + isin(@ + 6) = r,(cos 20 + isin 26)

Assuming that n = k: (r(cos 8 + i sin 0))k =
rk(cos k@ + i sin k0O),

When n = k+1: (r(cos 8 + i sin 8))k+1 = r(cos 8

+isin 0) x rk (cos @ + i sin O)k =

rk+1((cos 8 + i sin ) (cos kB + i sin kB)) =
rk+1(cos( @ + kB) + isin( O + kO)) =

rk+1(cos((k + 1)0) + isin((k + 1)0))

Therefore, (r(cos 8 + i sin 8))n = rn(cos nO + i

sin n) for all positive integers n.
Nth Roots

The Fundamental Theorem of Algebra states
that that every polynomial with degree n has n
roots. The method of finding the nth root helps
us find the roots of a polynomial, either real or
non-real. The equation below is one of the best
equations to display the method of finding nth

roots. The number 1 is a positive integer.

fxX)=xn—1
When n = 3,
fx)=x" -1

If we factor f(x), we get f(x) = (x — I)(x2 + x +
1). Knowing only one root, we can find the
other two roots using the quadratic formula.
The three roots are 1, (—-1+V3i)/2 ,
(—1—V3i.)/2 Transforming these roots into

polar form gives us (cosO + isin0),

2m .. 2 am .. 4
(COS?JT+ISm ?n),@us ?R-FISUI ?H).

Mapping these roots in the complex plane, we

get:

A

N
5 e 1 -05 J 15 2 2




Here, we can know that the roots, when
mapped in a complex plane, are evenly spaced
out. Why are they evenly spread out? We should
look at another example of finding nth roots.

Let x =1 * cis 6.

xt = —8—8V3i
ricis40 = 8(—1 — V3i)

) 41
rtcis40 = 8(2cis _)
3

47T
ricis40 = 16c¢cis __
3

From this, we get two equations:

1. rt=16
zl,
2. 48 = §+2nn, wheren € £

From equation 1, we can know that ¥ = 2, as r

represents a modulus(magnitude). From
equation 2, we get 8 = /3 + mn/2. Since we
know that the total number of roots is four
through the Fundamental Theorem of Algebra,
the four roots would be rcis 8 = rcis /3 +
mn/2. where nis 0, 1, 2, and 3 respectively. The

four roots are

T 0 . T "
—+—, 25 I+ —+—,
3 2 3 3 2

2cis L, 205
3

Since the angle of where the roots are mapped

in a complex plane increase at a constant rate,

the roots are evenly spaced when placed in a

complex plane.
Let wr =z wherew,z€ C,n € Z+

Then, w» = r(cos 8 + i sin 0), where 8§ ER, r >

0.

Moivre’s Theorem is used

When De

“backwards”, then we can derive that:

1
= 0+2km | . . 942k
wy = rn(cos —, —t isin %

where k=0,1,2,---,n—1

These roots have the same magnitude r, but
differ in their arguments by 27r/n. This means
that they are equally spaced on the circle with

radius 7 centered at the origin.

There are n complex numbers that are nth roots
of a given complex number. Every root has the
same modulus 7, but has n different arguments.
Therefore, they are equally spaced complex
numbers on the circle starting with the original

argument divided by n.

Letwn = 32 — 32v3i = 64cis =
3

S
1 3 5t
= 6CL = [
Zy = 64e6cis (“"‘6‘ ) = 2cis 18"
5r
1 3 2m 117
Z, = 646cis (""6' + z) = 205 18"
5m 17w
1 3 a7 -
Zy = 64ﬁcis_(~,.,6, + z) = 25 18"
S 23m
1 3 om
Z3 = 64eécis (“"6’ + _) = 2cis
6 18
om
1 3 8m 291
7, = 64scis (. + ;), =25 o
ST
1 3 10m 3571
Zs = 646cis (6 + ) = 2cis
6 18



Number theory

Modular arithmetic is a branch of mathematics
that deals with numbers and their remainders.
It introduces the concept of a modulus, which
represents the divisor used in the division
process. The notation below shows that a and b
have the same remainder when divided by

modulus m.
a = b(mod m)

One key property of modular arithmetic is that
we can perform various operations, such as
addition, subtraction, multiplication, and
exponentiation. The properties below are

examples of uses in modular arithmetic.
Given that a = b(mod m) and ¢ € Z+,
1. a+c=b+c(modm)
2. a—c=b—cimodm)
3. axc=bxcimodm)

4. ac = b<(mod m)

A polynomial f(z) has the factor-square property (or FSP) if f(z) is a factor of f(z?)
For instance, g(z) = 2 — 1 and h(x) = z have FSP, but k(x) = z + 2 does not.

Reason: x — 1 is a factor of % — 1, and z is a factor of 2%, but x + 2 is not a factor of 2% + 2

Multiplying by a nonzero constant “preserves” FSP, so we restrict attention to poly-
nomials that are monic (i.e., have 1 as highest-degree coefficient).

What patterns do monic FSP polynomials satisfy?
To make progress on this topic, investigate the following questions and justify your
answers

(a) Are x and x — 1 the only monic FSP polynomials of degree 17

(b) List all the monic FSP polynomials of degree 2.
To start, note that 27, 2% — 1, 2? — z, and 2? + z + 1 are on that list.
Some of them are products of FSP polynomials of smaller degree. For instance,
2% and 2% — r arise from degree 1 cases. However, 2 — 1 and 2 + z + 1 are new,
not expressible as a product of two smaller FSP polynomials
Which terms in your list of degree 2 examples are new?

(c) List all the monic FSP polynomials of degree 3. Which of those are new?

Can you make a similar list in degree 47

(d) Answers to the previous questions might depend on what coefficients are al-
lowed. List the monic FSP polynomials of degree 3 that have integer coefficients
Separately list those (if any) with complex number coefficients that are not all
integers.

Can you make similar lists for degree 47
Are there examples of monic FSP polynomials with real number coefficients that
are not all integers?

a. Let f(x) = apx +ap—1x7"'+ - +ajx+
aQ. By the Fundamental Theorem of
Algebra, either real or non-real, there
would be an n number of roots of f(x). Let
the roots be x1, x2, ... xn .Then, f(x1) =
f(x2) = f(x3) = -+ = 0. Since f(x) is a
factor of

FOx), f(x?) = f(x) x g(x). Since it is given that

f(x) has the factorsquare property,let x = x1,

and we getf(x12) = f(x1) = 0. Since x = x1 =

X2 = X3 =+ = xp,

f(x12) = f(xzz) = f(x32) = . f(xnz) = 0.
Therefore, we can say that

xlz, xzz, x32, s an are roots of the function

f(x). By the Fundamental Theorem ofAlgebra,
f(x) can only have a maximum number of n roots.

Since the roots are
x1,%x2,%3, ..., Xn and x12, xzz,x32, .y xnz, we

can say that xj = sz

b. A monic FSP polynomial of degree 1 can be
expressed as f(x) = x — a. Then, f(x?) =

x* —a = (x — a)q(x). From this, we know that

the zero of f(x?) is x = a. By puttingin this

value into the function f(x*) = x* — a, we

geta’—a=ala—1)=0.

Therefore, the only two values of a that

are satisfactory of this equation is O and 1.

Knowing the values of a, we can say that x

and x — 1 are the only monic FSP

polynomials of degree 1.



A monic FSP polynomial of degree 2 can be x=1lorx=-1,—1lorx=-1,1.

expressed as f(x) = x* + ax + b. However, x = —1, —1 would not make f(x) a FSP
Then, f(x?) = x* + ax* + b = (x* + ax + b)q(x). polynomial. (x + 1)* is not afactor of (x* + 1)%.
From this, we know that the zeros ~x=1lorx=-1,1.

£ o) i (-a+1fa2=4b)/2 (-a—w/a2=4b)/2 b) If both roots are complex conjugates:
of f(x?) is x = ,

1) x = cis@

However, finding the values of a by putting in
cis =

these values into the equation x* + ax* + b = 0 cis26 20 =
would be too complicated. Therefore, this 0(mod 21)
problem needs to be solved with a different 0 = O(mod 21
approach. x=1

fx) = (x = 1%
As xj = xj'z, we can let rcis@1 = (rcis6?). 2) x = cis(—6)

cis(—6) = cis26
20 = —0(mod 2m)
36 = O(mod 2m)

Then, rcis@1 = r’cis207, and r = r*. Therefore,

r = 0,1. According to the Fundamental

Theorem of Algebra, either real or non-real, any

. . By using Vieta’s formula, we know
quadratic function would have two roots. Cases Y £ ’

2
. . . that f(x) =x"+x + 1.
can be divided in terms ofmagnitudes of roots. f@x)

c) A monic FSP polynomial of degree 3 can be

1. Both roots have magnitudes of O: expressed as f(x) = x* + ax’ + bx + c.

This would mean that the two roots f(x) would Then, fx) = x° + ax* + b’ + ¢ = (¥’ + ax* +

equal to 0. f(x) = x. bx + c)q(x).

2. Roots have magnitudes of 0, 1: As x; = sz’ we can let rcisf] = (rcisd))

This would mean that the two roots f(x) would . ) )
Then, rcis@1 = r°cis262, and r = 1.

equal to O and cis@, respectively.
Therefore, r = 0,1. According to the

Fundamental Theorem of Algebra, either
cis@ = cisl0

6 = 26(mod 2m)

-6 = 0(mod 27)
terms ofthe types of roots.

6 = O(mod 2m),
1. When f(x) has three real roots:

As cisO = 1, the two solutions of f(x) = 0,1.

a) When (r1,72,73) = (=1, 1,1), f(x) = (x + 1)(x
Therefore, f(x) = x(x — 1).

- 1% As f(xD) = (F +

D — 12 = (& + Dlx + D — 1)" = fx)(x +

real ornon-real, any cubic function would

have three roots. Cases can be divided in

3. Both roots have magnitudes of 1:

a) If both roots are real:



Dx* + 1), f(x) is a FSP
polynomial.
b) When (r1,72,73) = (=1,1,0), f(x) = x(x* — 1).
As f(x?) = x*(x* = 1) =
(o = D + 1) = floxx® + 1), f(x) is a FSP
polynomial.
¢) When (r1,72,73) = (0,1,1), f(x) = x(x — 1)".
As f(x) = x*(x* = 1)" =
xHe — 1) + 1)F = f(x) - x(x + 1)%, f(x) is a FSP
polynomial.
d) When (r1,72,73) = (0,1,0), f(x) = x*(x — 1).
As f(x?) = x*x? — 1) =
xte — Dx + 1) = fo)x’(x + 1), f(x) is a FSP
polynomial.

e) When (1, 2, 73) = (0,0,0), f(x) = x°. As f(x?) = x°
= f(x)x’, f(x) is a FSPpolynomial.

)  When (r1,72,73)=(1,1,1), f(x)
=(x— 1N As fx)=( - 1) =
(x = D+ 1) = fFOx + 1)),
f(x) is a FSP polynomial.

2. When f(x) has one real root and
two complex conjugates:
a) When (r1,72,73) = (0, cis(0), cis(—0)):
i) 260 = 8(mod 2m):

6 = O(mod 2m)
0 = 2nn

6=0

When 6 = 0:

As cis(0) and cis(—0) is real, this option must be
excluded as the assumption is “cis(8) and cis(—6)

are complex conjugates.”

20 = —6(mod 2m):

30= (mod2m)

30 = 2nn

0 =12/3nn

0 =0,2n/3,4n/3

o When 6 =0:
0=0,20/3,46/3
As cis(0) and cis(=0) is real, this option
must be excluded as the assumption is
“cis(@) and cis(—6) are complex conjugates”.

When § = 2

3
(r,r,r,r)=(0,1cis (zn),cis (- 2")).
12 3 4 3 3

FOO) = 2 = 1) (x = (~2 42 0) (= (= == E) = xlx - 1) (x +
z 2 2 2

lfﬁi)(x‘i‘lJr‘/—g[):x(x—l)(x2+x+1) gt — 2
2 2 2 2
When 8 = ¥

3
(r,r,r,r)=(0,1,cis (h),cis (- 4”))_
12 3 4 Y

N E- (R = - 1) (x +
2 2 2

|~w\

fx) = x(x = 1) (x - (*2
LByt i—‘/—a_i) =x(x—1)(% +x+1) =x* —x.
2 2 2 2

When 0 = 41/3

(r,v,r,vr)=(0,1cis (4") ,cis (— A‘”))_
1 2 3 4 ? ?
FO) = 20— 1) (r — (~2 —E ) (x — (- 24 L) = 2 — 1) (x +

2z 2 2
148+

1_7,1_31_) =x(x—1)x? +x4+1) =x* —x.
2 2 2 2

When (rq, 5, 73) = (1, cis(@), cis(-0)):
20 = 6(mod 2m):

When 6 = 0:

0 = 0(mod 2m)
0 =12nn

60=0

As cis(0) and cis(=0) is real, this option must be
excluded as the assumption is “cis(8) and cis(—6)

are complex conjugates.”

2. 20 =—0(mod 2m):



30 = 0(mod 2m)
36 = 2mn
2

6:511‘1’1

e i

3+ 3

e When 8 =0:

e As cis(0) and cis(—0) is real, this option must
be excluded as the assumption is “cis(d) and
cis(—0) are complex conjugates”.

When 8 = ATK

Gor.r) = (eis (N, cis (=25,
3

12 3 3 3

F) = (x—1) (X*(*l*Jrﬁi))(x—(—l_—”if)) =(x—1) (x+ 1
2 2 2 2 2

Vet + )= r— D +x+1) =2 — 1.
2 2 2
Whenﬂ:d'—":
3
(r.r,r)=(1cis (4"),ci5(74n).
12 3 3 3
1 3 1 V3

f@) =G-DE-( - DE-( + D)=
2 2 2 2

W)

=) =(x-DE+x+1)=x-1

D+ + 0+
2 2 2

e |

(b) A monic FSP polynomial of degree 4 can be
expressed as f(x) = x* + ax’ + bx* +
cx +d. Then, f(x) = x® + ax® + bx* + cx*

+d = (x*+ ax’ + bx’ + cx + d)q(x).

As xj = sz, we can let rcisf1 =
(rcis@7)’. Then, rcis@1 = r’cis267,
and r = r*. Therefore, 7 = 0,1. According
to the Fundamental Theorem of
Algebra, either real ornon-real, any cubic
function would have three roots. Cases

can be divided in terms ofthe types of

Toots.

b) When (r1,72,73,74) = (1,1,1,-1), f(x) = (x
—1P(x + 1). As f(x) = (& — 1)’(x? +1) =
o+ D’ = D’ + 1) = flo) - (x + D
+ 1), f(x) is a FSP polynomial.
¢) When (r1,72,73,74) = (1,1,1,0), f(x) =
x(x — 1) As f(x) = x*"(x* — 1)’ =
o+ 1D’ = 1) = f(x) - xlx + 1), fx) is a
FSP polynomial.

When (r1,72,73,74) = (1,1,-1,-1), f(x) = (x —

D + 1)%. As f(x?) =

(= DO+ 17 = (x + D(x — D+ 1)° =

fx) - (& + 1), f(x) is a FSP

polynomial.

e) When (r1,12,73,74) = (1,1,-1,0), f(x) = x(x

+ D — 1% As f(x?) =

X0+ D=1 = 2+ D+ DA — 1) =

fx) - x(x? + Dx + 1), f(x)

is a FSP polynomial.

f) When (r1,72,73,74) = (1,1,0,0), f(x)

= xMx — 1% As f(x) = x*(x* — 1)* =

o+ D — 1) = f(x) - x*(x + 1)), f(x) is a

FSP polynomial.

g) When (r1,72,73,74) = (1,—1,0,0), f(x) =

xHx + Dx — 1). As f(x?) = x*(x? +1)(x* —
1) =x*c + D + Dlx — 1) = f(x) - x*(x* +
1), f(x) is a FSP polynomial.

h) When (r1,772,73,74) = (1,0,0,0), f(x) = x’(x —

1. When f(x) has four real roots:
a) When (r1, 72, 73, 74) =
(1L,1,1,1), f(x) = (x — D* As i)
fO) = (= D =(x + DHx
- D= fx) - (x + DY, flx)
is a FSP polynomial.

D). As f(x?) = x°( — 1) = x%x +1)(x — 1) =
f(x) - x’(x + 1), f(x) is a FSP polynomial.
When (r1, 2,13, 74) = (0,0,0,0), f(x) = x*.
As f(x?) = x° = f(x) - x*, f(x) is a FSP

polynomial.



2. When f(x) has two real roots and two complex

conjugates:
a) When (r1,72,73,74) = (0,0, cis(9), cis(-0)):
i) 20 = 8(mod 2m):

6 = O(mod 2m)
0 =2mn

6=0

When 6 = 0:

As cis(0) and cis(=0) is real, this option must be
excluded as the assumption is “cis(@) and

cis(=0) are complex conjugates.”

ii) 20 = —0(mod 2m):

36 = 0(mod 2m)

30 =2nmn
2
7] :§1m
0 =0, 27 4_71:
When 0 = O:

As cis(0) and cis(=0) is real, this option mu
st be excluded as the assumption is “cis(f) a
nd cis(—0) are complex conjugates”.

When 8 = 7

3

(r,r.r,r)=(0,0,cis {zn) ,cis (— Zr')).
123 4 B )

2 1 3 13 2 L3

fr =x (x—(— + D@E—(— - D)=x x+ — D+
2 2 2 2 2 2

l+ﬁf):x2(x2 +x 4+ 1) =xt+ 23 + 22,
2 2

When 8 =22

3
(r,r,r,r)=(0.0,cfs(4"),c£5(—h).
12 3 4 3 3

2 1 3 143 2 1o

fxo=x (x—(— — D@—(— + D=x (x+ + Dx+
2 2 2 2 2 3

L =x2(x+x+1) = x4+ 23 + x2.
2

v
2

When (r1,72,73,74) = (0, 1, cis(9), cis(=0)):
i) 260 = 6(mod 2m):

6 = 0(mod 2m)
0 =2nn
0 =0

When 6 = 0:

As ¢is(0) and cis(—0) is real, this option must
be excluded as the assumption is “cis(@) and

cis(—6) are complex conjugates.”

26 = —0(mod 2n):

36 = 0(mod 2m)

368 = 2nn
2
0 =§1m
6 =0, 2n 4-_77.'
3~ 3
When 6 = 0:

As cis(0) and cis(=0) is real, this option must be
excluded as the assumption is “cis(6) and
cis(—0) are complex conjugates”.

When § =2

3
(r,r,r,r)=(01cis (2”),&'5 (- Zr')).
123 4 3 3

FOO = 20— 1) (e — (242 0) (r — (- 2= ¥) = x(x— 1) (x +
2 2 2 2

LB+ ey = x(x— 12 +x+1) =xt —x.
2 2 2 2

When 8 = 2Z:
3

(7 .r,r)=(0,1,cis ("), cis (= ).
1 2 3 4 3 3

FG) = xx — 1) (x = (2 =L (r = (= 2+ 20)) = 2 — 1) (x +
2 2 2 2

LB+ oy o xx— DG +x+1) =x1 —x.
2 2 2 2

When (r1,7,,73,74) = (1, 1, cis(), cis(—0)):
20 = 8(mod 2m):

6 = 0(mod 2m)
0 =12nn

0=0

When 6 = 0:

As cis(0) and cis(=0) is real, this option must be



excluded as the assumption is “cis(8) and

cis(—6) are complex conjugates.”

20 = —6(mod 2m):

30 = 0(mod 2m)

36 = 2nmn
2
ngnn
9_0271 4t
33
When 0 = 0:

As c¢is(0) and cis(=0) is real, this option must be
excluded as the assumption is “cis(6) and

cis(—6) are complex conjugates”.

When § = T
3
(rrrr)—(llcts( ™, cis (— ))
12 3 4 3
1 \E 1 V3 2

2

f(x) =@—1) (x—(—;+

T E-(- -
2 2

G+ +P) = (-1 +x+1D) =xt—x3—x+ L
2 2 2
WhenH:ﬂ:

3

r,r,r r)—(llua( )u\(— )
12 3 4

1 u’E L3 2

1)) (x—(= +

2
fx) =@x-1) (x*(* -

V'f3i)(.7c+1_7V D=(x—-Dxx24+x+1) =xt—x>—x+1.
2 2

When f(x) has four complex conjugates:
(r1,1m2,73,74) = (cis(01), cis(-01),
cis(87), cis(—=07)):

i) 260, = 6,(mod 2m):
0, = O(mod 2m)
01 = 2nn
61=0
When 6, = 0:

As cis(0) and cis(—0) is real, this option must be

)= (x-
2

=G-D &
z

excluded as the assumption is “cis(6;) and

cis(—6,) are complex conjugates.”

201 =—-01(mod 2m):

38, = 0(mod 2m)

381 =2nn
2
601 —§1m
T 4
91 - —T[
When 6, = 0:

As ¢is(0) and cis(—0) is real, this option must be
excluded as the assumption is “cis(8,) and

cis(=6,) are complex con]ugates

When 91 ="
3

(r,r.r r)—{cts( ]c!s(f )us(!?)ux( 8 ).
12 3 4 3 3 2 2

As 268, = 8>(mod 2m),
(r,r,r r)—(ns( ), czs(— . CIS( "), cis (— ))

12 3 4
- B 2
1 v’3 1 V3 1 3

f) =Wx— (= + I))(Jf—(— - i))) =((x+;—2i)(x+

2
1)) =@ +x+ 1)
2 2

Whenﬂlzﬂ:
3
(r,r.,r r)—(cn( )Ch(— ™, m( ", Lm(— ))
123 4 3
N B 2
1 V3 1 V3 1 V3

fO) =((x—(- + DE-(- - D) =(x+ - D+
2 2 2 2 2 2

2
480y =(2+x+1)%
z 2

201 = 62(mod 2m):

401 = 61(mod 2m),—61(mod 2m), 260 1(mod
2m),—261(mod 2m)

61 = 0(mod 2m)

01 =2mn
01=0
When 6, =0:

As cis(0) and cis(=0) is real, this option must be

excluded as the assumption is “cis(@;) and



cis(=0,) are complex conjugates.” cis(=0,) are complex conjugates.”

When él =2
3
20, =—6,(mod 2): (ar v 1) = (eis (0, eis (=) cis (0, cis (= ).
1 2 3 4 3 3 3 3
_ _ 2
361 = 0(mod 2m) e v L
30, = 2mn f@ === + NE=(= = D) =+ = D+
2 2 2 2 2 2 2
6,=-mn _ 2
;311 i ++»J—3i)) =(x2+x+1)2
61 = 0, ) — 2 2
3 3 When 81 = "
3
When 6, = 0: (o v v ) = (cis (), cis (= 1), cis (), cis (= ).
12 3 4 3 3 3 3
As cis(0) and cis(=0) is real, this option must be - s -
excluded as the assumption is “cis(8;) and f@ =E-C+ DE=( - D) =+ - D+

. . . ”» — 2
cis(=0,) are complex conjugates. spBy) =@ +x+ D
2 2

When 81 = 2::
3

(r.r,r,r)=(cis O, cis (= ), cis(0), cis(—8 ).

1 2 3 4 3 3 2 2
As 26, = 6y(mod 21), When 46, = —0,(mod 2m):
(.r ) = (cis (), cis (=), cis (7 eis (= ).
1 2 3 4 3 3 3 3
- s _ 5601 = 0(mod 2m)
NE V3 1 3
_ = B o= 50 =2nn
f) =((x—(— + DE-(C- - D)) =x+ - D>+ 2
2 2 2 2 2 2 6 _ T[n
_ 2 1= 5
++"*§i)) =(xZ+4+x+1)% 0 AT 4T 6T 8w
2 2 =0 — — —— —
1 ’ 2 et mend
When 0, = *". 5 5 5% 5
3
(ror,r,r) = eis ("), eis (=", eis (M), cis (= 7))
12 3 4 3 3 3 3 When91=0:

N B 2
1 V3 1 V3 \ 43

f) =((x—(— + DE-(- — D)) =(@x+ - D+
2 2 2 2 2 2

s excluded as the assumption is “cis(6;) and
++4E0)) =@ +x+1)2
2 2

As ¢is(0) and cis(—0) is real, this option must be

cis(—0,) are complex conjugates.”

201 = 62(mod 2m): When 8; = ",
5
( T, )= 2"}.-. _2”).-.4").-. 4 )
461 = 61(mod 21),~61(mod 21), 26 (mod L) TR ) )
2 2: 2 * 4 3 2
27'[), —291(m0d 27‘[) fx) =¢ - 23ccos(5 )+DE - 2xcos(:)+ 1)=x +x +x +
x+1.
When 401 = 91(‘mod 21r): When 6; =™
5
391 = O(mod 2m) (r,r,r,r)= (cis(:"),cis (71”),61'5 (ir),fiﬁ (*f))-
123 4 : 5 5 ;
36, = 2mn 2 o ) e " 4 s
91= mn f(x) =& —2xcos( )+ 1)k 72xcos(_)+1):x +x +x +
3 x+ 1. ’ ’
2T AT
6,=0, =3 When 46, = 20,(mod 2m):
26, = 0(mod 2m)
When 8, = 0:
: 2601 = 2mn

As ¢is(0) and cis(—0) is real, this option must be 8, =mn

excluded as the assumption is “cis(8,) and 6, =0,m



When 91 =0: (r.r.r.r) S 5, 10x 10m

1 2 3 4 e T rases oy TTaavesn IFETTR e

3"’ 3 3 3
f(x) = (x? — 2xcos (

. , . . . S 2 g (Lom - 2
As ¢is(0) and cis(—0) is real, this option must 7) T 1) (% — 2xcos (57) +1) = x* a2 + 1.

be excluded as the assumption is “cis(6;) and

cis(—0,) are complex conjugates”.

When 6, = m:

(r1,72,73,74) = (cis(n), cis(-n), cis(2m),
cis(—2m)).

f(x) = (x* = 2xcos(m) + 1)(x* — 2xcos(2m) + 1)
=P+ 20+ Dx? +2x + 1) = xt + 47 + 6x7 +

4x + 1.

When 40, = —260,(mod 2m):

661 = 0(mod 2m)

661 = 2mn
1
6,= =mn
T 21T 4y 5T
=0,=r—,M,—/>
61=03"73 33
When 6, = 0:

As cis(0) and cis(—0) is real, this option must
be excluded as the assumption is “cis(@;) and

cis(—0,) are complex conjugates”.

When 6, = r/3:

n
When §; = —;
(r.r.r ,r3) = (cis ("), cis (=), cis (), cis (—7)).
123 4 3 3 3 3
. & T 2 n 4 2
Ja =g eesws T Le casveN T L =X Ta L
2n
When 81 = —
3
(rur,r,r)=(cas(),cs(—_),cis(),cs(=_)).
123 4 3 3 3 3
(] < Zn k] ' “ 3 z
L V)T LR e YIITL -4 T Toa T
2x + 1.
When 61 = m:

(r,1ara,rs) = (cis(m), cis(—m), cis(2m), cis(—2m)).
f(x) = (x2 — 2xcos(m) + 1)(x% — 2xcos(2m) + 1) = x — 2x% 4+ 1.

When91=T

(ror,r,r)=(cs(),cs(—_),cis (), cs(—_)).

12 3 4 3 E 3 3

[ < i 2 o : B 5 z
1A —g  easuen TIT e “enee T T =4 Ta Tox T
2x+1

Whent?r:%".



