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Standard Form of a Complex Number  

A complex number is a number that is formed 

by adding a real number and an imaginary 

number. Complex numbers are usually 

expressed in the form of 𝑎 + 𝑏𝑖, the standard 

form, where 𝑖 = √−1. 𝑎 is called the real part 

and 𝑏 is called the imaginary part. 

A complex number can be plotted in a 

coordinate plane with a real axis and an 

imaginary axis. An example of one is shown 

below. 

 

By starting from the origin and moving the 

point horizontally by 𝑎 and vertically by 𝑏, it is 

possible to plot the complex number 𝑎 + 𝑏𝑖 on 

the complex plane. In this case, the distance 

between the point and the imaginary axis would 
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be 𝑎 and the distance from the real axis would 

be 𝑏.  

 

Properties 

Property 1: Absolute value of a complex 
number 

Given a complex number 𝑧 = 𝑎 + 𝑏𝑖, where 𝑖 = 

√−1, the absolute value of the complex number 

can be expressed as |𝑧| = √𝑎2 + 𝑏2. Since the 

distance between the point and the imaginary 

axis is 𝑎 and the distance between the point and 

the real axis is 𝑏, we could create a right triangle 

by connecting the origin and the point. 

Therefore, by the Pythagorean theorem, the 

distance between the origin and 𝑧 is √𝑎2 + 𝑏2. 

Here is a visual representation: 

Property 2: Equivalence of Complex Numbers 

Given two complex numbers 𝑎 + 𝑏𝑖 and 𝑐 + 𝑑𝑖, 

where 𝑖 =  √−1, 𝑎 + 𝑏𝑖 = 𝑐 + 𝑑𝑖 if and only if 

𝑎 = 𝑐 and 𝑏 = 𝑑. No other cases would work, as 

either the direction of movement starting from 

the origin, the distance from the real axis and 

the imaginary axis, or both would be different. 

Property 3: Conjugate Pairs 

Given a complex number 𝑧 = 𝑎 + 𝑏𝑖 , where 

𝑖 =  √−1, the conjugate pair of the complex 

number is expressed as 𝑧 = 𝑎 − 𝑏𝑖.̅ There are 

three properties that follow. 

The first property is that 𝑧̿  =  𝑧 . Since the 

conjugate pair of 𝑧 can be obtained by changing 

the sign of the imaginary part, the conjugate 

pair of 𝑧̅ would also be obtained by changing 

the sign of the imaginary part. Doing so would 

give 𝑎 + 𝑏𝑖, which is equal to 𝑧. 

The second property is that given two complex 

numbers 𝑧 = 𝑎 + 𝑏𝑖 and 𝑤 = 𝑐 + 𝑑𝑖, 𝑧 ×  𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ = 

𝑧̅ × 𝑤̅. By adding the two complex numbers, 𝑧 

+ 𝑤 = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖. The conjugate pair, 𝑧 +

 𝑤 = (𝑎 + 𝑐̅̅ ̅̅ ̅̅ ̅) − (𝑏 + 𝑑)𝑖.  Also, 𝑧 + 𝑤 =

(𝑎 − 𝑏̅𝑖) + (𝑐̅ − 𝑑𝑖)  = (𝑎 + 𝑐)   −  (𝑏 + 𝑑)𝑖 . 

Therefore, 𝑧 ×  𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧̅ × 𝑤̅. 

The third property is that given two complex 

numbers 𝑧 = 𝑎 + 𝑏𝑖 and 𝑤 = 𝑐 + 𝑑𝑖, 𝑧 ×  𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ = 

𝑧̅ × 𝑤̅. Since 𝑧 × 𝑤 = (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = 𝑎𝑐 − 𝑏𝑑 

+ (𝑎𝑑 + 𝑐𝑏)𝑖, 𝑧 ×  𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑎𝑐 − 𝑏𝑑 − (𝑎𝑑 + 𝑐𝑏)𝑖. 

Next, 𝑧̅ × 𝑤̅ = (𝑎 − 𝑏𝑖)(𝑐 − 𝑑𝑖) = 𝑎𝑐 − 𝑏𝑑 − 

(𝑎𝑑 + 𝑐𝑏)𝑖. Therefore, 𝑧 ×  𝑤̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧̅ × 𝑤̅.  



Polar Form of a Complex Number 

In order to understand the polar representation 

of complex numbers, it is necessary to know the 

fundamentals of polar coordinates. The 

coordinates of a point on a 𝑥𝑦 plane can be 

expressed as (𝑥, 𝑦), where 𝑥 is the horizontal 

position with respect to the origin and 𝑦 is the 

vertical position with respect to the origin. The 

polar coordinates of (𝑥, 𝑦) is represented as (𝑟, 

𝜃), where 𝑟 is the distance between the point 

and the origin and 𝜃 is the angle from the 

positive x-axis. 

Polar coordinates can be plotted by first plotting 

the rectangular coordinate (𝑥, 𝑦) and then using 

the following properties: 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 

𝜃, 𝑟2 = 𝑥2 + 𝑦2, and tan 𝜃 = 
𝑦

𝑥
. Using given 

information and these properties, we can get 

the values of 𝑟 and 𝜃. A visual representation 

would look like the following image. 

 

The polar coordinates of a complex number can 

be plotted on a complex plane. Given a complex 

number 𝑎 + 𝑏𝑖, 𝑎 = 𝑟 cos 𝜃, 𝑏 = 𝑟 sin 𝜃, and 𝜃 

= tan
−1𝑏

𝑎
. Using these properties, 𝑎 + 𝑏𝑖 = 𝑟 cos 

𝜃 + 𝑖𝑟 sin 𝜃 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) = 𝑟𝑐𝑖𝑠𝜃. 𝑟 is 

called the modulus (magnitude) and 𝜃 is called 

the argument (angle). Therefore, the polar form 

of 𝑎 + 𝑏𝑖 is 𝑟𝑐𝑖𝑠𝜃. As visible in the image below, 

𝑟 = |𝑧| = √𝑎2 +  𝑏2̅̅ ̅. 

To better understand the polar form, consider 

the following example problems: 

Ex1) Find the polar form of the complex 

number 1 + 𝑖. 

In order to find the polar form of a complex 

number, we must find 𝑟 and 𝜃. Since 

𝑟=√𝑎2 + 𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑟 = √2̅. Also, since 𝜃 = 𝑡𝑎𝑛−1
𝑏

𝑎, 

𝜃 = 𝑡𝑎𝑛−1 1 = 
𝜋

4
. Therefore, the polar form of 

1 + 𝑖 is √2̅𝑐𝑖𝑠
𝜋

4
. 

Ex2) Find the polar form of the complex 

number −1 +  √3𝑖.̅ 

Again, we need to find 𝑟 and 𝜃. Since 𝑟 =

 √𝑎2  +  𝑏2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝑟 = √4 = 2̅ . Also, since 𝜃 =

𝑡𝑎𝑛−1
𝑏

𝑎  = 𝑡𝑎𝑛−1  − √3 =  − 
𝜋

3
. Due to the 

limited range of the inverse tangent function, 

only a single value of the angle, − 
𝜋

3
, can be 



computed. However, it needs to be adjusted to 

correspond to the angle of the complex number 

given that is in quadrant II. Therefore, θ =
2𝜋

3
. 

So, the polar form of the complex number 

−1 + 3𝑖 is 2𝑐𝑖𝑠
2𝜋

3
. 

We can also convert the polar form of a complex 

number into the rectangular form. Consider 

the following example problems: 

Ex1) Find the rectangular form of the complex 

number 𝑐𝑖𝑠 (−
𝜋

4
). 

In this case, 𝑟 = 1 and 𝜃 = −
𝜋

4
. If we plot this 

complex number on the complex plane, it 

would look like the following image: 

Since 𝜃 = −
𝜋

4
, by using special right triangles, 

𝑎 =
√2̅

2
 and 𝑏 = −

√2̅

2
. Therefore, the 

rectangular form of this complex number is 

√2̅

2
−

√2̅

2
𝑖.  

Ex2) Find the rectangular form of 4𝑐𝑖𝑠 (
7𝜋

6
).  

In this case, 𝑟 = 4 and 𝜃 = 
7𝜋

6
. Plotting on a 

complex plane would look like the image below. 

 

The angle formed by the negative real axis and 

the number is 
𝜋

6
,. Therefore, by using special 

right triangles, 𝑎 = −2√3̅  and 𝑏 = −2 . So, 

the rectangular form of 4𝑐𝑖𝑠 (
7𝜋

6
) is −2√3̅ − 

2𝑖. 

Addition and Subtraction of Complex 

Numbers 

Given two complex numbers 𝑧1 = 𝑟1(cos 𝜃1 +

 𝑖 sin 𝜃1) and 𝑧2 = 𝑟2(cos 𝜃2 +  𝑖 sin 𝜃2) , the 

sum/difference of these two complex numbers 

is 𝑟1(𝑐𝑜𝑠 𝜃1 + 𝑖 𝑠𝑖𝑛 𝜃1) ± 𝑟2(𝑐𝑜𝑠 𝜃2  +

 𝑖 𝑠𝑖𝑛 𝜃2)  =  𝑟1 cos 𝜃1 + 𝑟2 cos 𝜃2 ±

  𝑖(𝑟1 𝑠𝑖𝑛 𝜃1 + 𝑟1 𝑠𝑖𝑛 𝜃1). Just like the process 

of the standard form, the real parts are added or 

subtracted and the imaginary parts are added or 

subtracted. 

Multiplication and Division of Complex 

Numbers 

Given two complex numbers 𝑧1 = 𝑟1(cos 𝜃1 +

 𝑖 sin 𝜃1) and 𝑧2 = 𝑟2(𝑐𝑜𝑠 𝜃2  +  𝑖 𝑠𝑖𝑛 𝜃2), 



the product of these two complex numbers is 

𝑟1𝑟2(𝑐𝑜𝑠 (𝜃1 + 𝜃2) + 𝑖 sin (𝜃1 + 𝜃2)). This 

can be proven by expanding and using 

trigonometric identities. Here is the full proof: 

𝑧1𝑧2 = 𝑟1𝑟2 cos 𝜃1 + 𝑖 𝑠𝑖𝑛𝜃1)(cos 𝜃2 +

𝑖 sin 𝜃2)  

= 𝑟1𝑟2 (cos 𝜃1 × 𝑐𝑜𝑠 𝜃2 + 𝑐𝑜𝑠𝜃1 × 𝑖 𝑠𝑖𝑛𝜃2 +

𝑐𝑜𝑠 𝜃2 × 𝑖 𝑠𝑖𝑛𝜃1 − 𝑠𝑖𝑛𝜃1 × 𝑠𝑖𝑛𝜃2)  

= 𝑟1𝑟2(cos (𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2)).  

Dividing these complex numbers gives 
𝑟1

𝑟2
(cos(𝜃1 − 𝜃2) + 𝑖 sin(𝜃1 − 𝜃2)).This can be 

proven by rationalizing and using trigonometric 

formulas: 

𝑧1

𝑧2
−

𝑟1(cos𝜃1 + 𝑖 sin 𝜃1)

𝑟2(cos𝜃2 + 𝑖 sin 𝜃2)
−

𝑟1(cos𝜃1 + 𝑖 sin 𝜃1)

𝑟2(cos𝜃2 + 𝑖 sin 𝜃2)
 

=
𝑟1

𝑟2
×

(cos𝜃1+𝑖 sin 𝜃1)(cos𝜃2−𝑖 sin 𝜃2)

(cos𝜃2+𝑖 sin 𝜃2)(cos𝜃2−𝑖 sin 𝜃2)
  

=
𝑟1

𝑟2
×

cos𝜃1×cos𝜃2−cos𝜃1×𝑖 sin 𝜃2+cos𝜃2−𝑖 sin 𝜃1+𝑠𝑖𝑛𝜃1× 𝑖 sin 𝜃2

(cos2𝜃2+sin2 𝜃2)
  

=
𝑟1

𝑟2
× (cos𝜃1 × cos𝜃2 − cos𝜃1 ×

𝑖 sin 𝜃2 + cos𝜃2 × 𝑖 sin 𝜃1 + 𝑠𝑖𝑛𝜃1 × sin 𝜃2  

=
𝑟1

𝑟2
(cos(𝜃1 − 𝜃2) + 𝑖 𝑠𝑖𝑛(𝜃1 − 𝜃2)).  

Consider the following example problems. 

Example 1 will be solved with standard form 

and Example 2 will be solved with polar form. 

Ex1) There are two complex numbers 𝑧1 = 2 +

3𝑖 𝑎𝑛𝑑 𝑧2 = 3 − 𝑖. 

a) Find 𝑧1𝑧2. 

(2 + 3𝑖)(3 − 𝑖) = 6 − 2𝑖 + 9𝑖 + 3 = 9 + 7𝑖  

b) Find 
𝑧1

𝑧2
. 

(2 + 3𝑖)

3−𝑖
=

(2+3𝑖)(3+𝑖)

(3−𝑖)+(3+𝑖)
=

6 + 2i + 9i + 3𝑖2

9−𝑖2 =
3

10
+

7

10
𝑖  

Ex2) There are two complex numbers 𝑧1 −

𝑧(𝑐𝑜𝑠
𝜋

6
+ 𝑖 𝑠𝑖𝑛

𝜋

6
)  and 𝑧2 = 3 (𝑐𝑜𝑠

2𝜋

3
+

𝑖 sin
2𝜋

3
).  

a)   Find 𝑧1𝑧2. 

The multiplication formula states that 𝑧1𝑧2 =

𝑟1𝑟2(𝑐𝑜𝑠(𝜃1+𝜃2) + 𝑖 𝑠𝑖𝑛(𝜃1+𝜃2)). In this 

case, 𝑟1 = 2, 𝑟2 = 3, 𝜃1 =
𝜋

6
, 𝜃2 =

2𝜋

3
 

𝑧1𝑧2 = 2 × 3 (𝑐𝑜 𝑠 (
𝜋

6
+

2𝜋

3
) + 𝑖 sin (

𝜋

6
+

2𝜋

3
)) = 6 (𝑐𝑜𝑠

5𝜋

6
+ 𝑖 𝑠𝑖𝑛

5𝜋

6
)ind 

𝑧1

𝑧2
. 

The division formula states that  

𝑧1

𝑧2
=

𝑟1

𝑟2
(𝑐𝑜𝑠(𝜃1−𝜃2) + 𝑖 𝑠𝑖𝑛(𝜃1+𝜃2)). 

By substitution,  

𝑧1

𝑧2
=

2

3
(𝑐𝑜𝑠 (

𝜋

6
−

2𝜋

3
) + 𝑖 𝑠𝑖𝑛 (

𝜋

6
−

2𝜋

3
)) 

=
2

3
(𝑐𝑜𝑠 (−

𝜋

2
) + 𝑖 𝑠𝑖𝑛 (−

𝜋

2
)).  

As seen in the two example problems, using the 

standard form requires expanding and 

rationalizing. In order to multiply or divide two, 

three, four, or more complex numbers, this 

process would be very complicated. However, 

using the polar form would facilitate this 

process because there is no complicated process 

with the modulus and the argument. 



De Moivre’s Theorem 

Given that the complex number 𝑧 =

𝑟(cos 𝜃 + 𝑖 sin 𝜃), De Moivre’s theorem states 

that 𝑧𝑛 =  𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃). This means that 

when a complex number is raised to the power 

of 𝑛, 𝑟, the distance between the origin and the 

complex number, becomes raised to the power 

of 𝑛 and 𝜃, the angle formed by the positive real 

axis and the segment between the origin and the 

point, becomes multiplied by 𝑛. 

Here are two example problems: 

Ex1) Given that 𝑧 =  2 (𝑐𝑜𝑠 
𝜋

6
 +  𝑖 𝑠𝑖𝑛 

𝜋

6
), 

find the value of 𝑧6. 

De Moivre’s theorem states that 𝑧𝑛 = 𝑟𝑛(cos 𝑛𝜃 

+ 𝑖 sin 𝑛𝜃). In this case, 𝑛 = 6. Therefore, z6 =

26 (𝑐𝑜𝑠
6𝜋

6
 +  𝑖 𝑠𝑖𝑛

6𝜋

6
 ) = 64(𝑐𝑜𝑠 𝜋 +

𝑖 𝑠𝑖𝑛 𝜋) = 64 × −1 =  −64. 

Ex2) Given that 𝑧 = 2 + 3𝑖, find the value of 𝑧4 

𝑧 = 2 + 3𝑖 =

√13̅̅̅̅ (cos (𝑡𝑎𝑛−1 (
3

2
)) + 𝑖 sin (𝑡𝑎𝑛−1 (

3

2
 )))  

Applying De Moivre’s theorem, 𝑧4 =

169 (cos(4𝑡𝑎𝑛−1 (
3

2
) +𝑖 𝑠𝑖𝑛 (4𝑡𝑎𝑛−1 (

3

2
))) 

Before going into the proof of this theorem, it 

is important to notice this pattern: 

𝑧2 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛𝜃) × 𝑟(𝑐𝑜𝑠𝜃 +

𝑖 𝑠𝑖𝑛𝜃)𝑜𝑠𝜃 × 𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜃 × 𝑖 𝑠𝑖𝑛𝜃 +

𝑖 𝑠𝑖𝑛𝜃 × 𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃 × 𝑠𝑖𝑛𝜃)  

= 𝑟2(cos 2𝜃 × 𝑖 sin 2𝜃) ∴ 𝑧1𝑧2 =

𝑟1𝑟2(𝑐𝑜𝑠(𝜃1+𝜃2) + 𝑖 𝑠𝑖𝑛(𝜃1+𝜃2))  

𝑧3 = 𝑟2(cos 2𝜃 + 𝑖 sin 2𝜃) × 𝑟(𝑐𝑜𝑠𝜃 +

𝑖 𝑠𝑖𝑛𝜃)  

= 𝑟3(cos 2𝜃 × 𝑐𝑜𝑠𝜃 + cos 2𝜃 × 𝑖 𝑠𝑖𝑛𝜃 +

𝑖 sin 2𝜃 × 𝑐𝑜𝑠𝜃 − sin 2𝜃 × 𝑠𝑖𝑛𝜃)  

= 𝑟3(cos 3𝜃 + 𝑖 sin 3𝜃       

∴ 𝑧1𝑧2 = 𝑟1𝑟2(𝑐𝑜𝑠(𝜃1+𝜃2) + 𝑖 𝑠𝑖𝑛(𝜃1+𝜃2))  

𝑧4 = 𝑟3(cos 3𝜃 + 𝑖 sin 3𝜃) × 𝑟(𝑐𝑜𝑠𝜃 +

𝑖 𝑠𝑖𝑛𝜃)  

= 𝑟4(cos 3𝜃 × 𝑐𝑜𝑠𝜃 + cos 3𝜃 × 𝑖 𝑠𝑖𝑛𝜃 +

𝑖 sin 3𝜃 × 𝑐𝑜𝑠𝜃 − sin 3𝜃 × 𝑠𝑖𝑛𝜃)  

= 𝑟4(𝑐𝑜𝑠 4𝜃 + 𝑖 𝑠𝑖𝑛 4𝜃)     

∴ 𝑧1𝑧2 = 𝑟1𝑟2(𝑐𝑜𝑠(𝜃1+𝜃2) +

𝑖 𝑠𝑖𝑛(𝜃1+𝜃2))ematical Induction and Proof 

of De Moivre’s Theorem 

Mathematical induction is a method to prove a 

conjecture true. Proof using induction requires 

two steps. The first step is to prove a conjecture 

true for base case when 𝑛 = 𝑘 (usually 𝑘 = 1). 

The next step is to assume that the given 

conjecture, 𝑃(𝑛), is true and prove 𝑃(𝑛 + 1) to 

be true. If these two steps are successfully 

proven, the conjecture is proven true for all 

integer values greater than or equal to 𝑘. 

Therefore, we can prove De Moivre’s Theorem 

by using mathematical induction. 

We have a conjecture that 𝑧𝑛  =  𝑟𝑛(cos 𝑛𝜃  +

 𝑖 sin 𝑛𝜃). This conjecture can be proven true 

for 𝑛 = 1: 

𝑧1 = 𝑟1(cos 1𝜃 + 𝑖 sin 1𝜃) × 𝑟(𝑐𝑜𝑠𝜃 +

𝑖 𝑠𝑖𝑛𝜃).  



Let 𝑃(𝑛), the induction hypothesis, be the 

statement that 𝑧𝑛 = 𝑟𝑛  (cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃). 

Assuming 𝑃(𝑛) is true, we can prove 𝑃(𝑛 + 1) is 

true: 

𝑧  𝑛+1 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃) × 𝑟(𝑐𝑜𝑠𝜃 +

𝑖 𝑠𝑖𝑛𝜃).  

= 𝑟 𝑛+1(cos 𝑛𝜃 × cos 𝜃 + cos 𝑛𝜃 × 𝑖 sin 𝜃 +

 𝑖 sin 𝑛𝜃 × cos 𝜃 − sin 𝑛𝜃 × sin 𝜃)  

= 𝑟 𝑛+1(𝑐𝑜𝑠 (𝑛𝜃 + 𝜃) + 𝑖 𝑠𝑖𝑛 (𝑛𝜃 + 𝜃)) =

𝑟 𝑛+1(𝑐𝑜𝑠 (𝑛 + 1)𝜃 + 𝑖 𝑠𝑖𝑛 (𝑛 + 1)𝜃)  ∴

𝑧  𝑛+1 = 𝑟𝑛+1(cos(𝑛 + 1)𝜃 + 𝑖 sin(𝑛 + 1)𝜃)  

Therefore, 𝑧𝑛 = 𝑟𝑛 (cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃) is true 

for all integer values of 𝑛. 

The nth roots of a complex number 

Given that 𝑤𝑛 = 𝑧, where 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) , 

𝑛 𝜖 ℕ , the 𝑛th root of a complex number can 

be represented as 𝑤𝑘  =  𝑟
1

𝑛
(𝑐𝑜𝑠

θ+2kπ

𝑛
+

𝑖 sin
θ+2kπ

𝑛
)here 𝑘 is all integers from 0 to 𝑛−1. 

Consider the following examples: 

Ex1) Given that 𝑤6 = 64(cos 𝜋 + 𝑖 sin 𝜋), find 

the roots. 

Since we want to find the 6th root of this 

complex number, we can represent this complex 

number as 𝑤6 = 64(cos 𝜋 + 𝑖 sin 𝜋). Now, using 

the formula above, we can substitute 𝜋 for 𝜃, 64 

for 𝑟, and 6 for 𝑛. Also, 𝑘 = 0, 1, 2, 3, 4, 5. 

𝑤0 = 2(cos
π+2×0×π

6
+ 𝑖 𝑠𝑖𝑛

π+2×0×π

6
=

2(cos
π

6
+ 𝑖 sin

π

6
= 2𝑐𝑖𝑠

π

6
  

𝑤1 = 2(cos
π+2×1×π

6
+ 𝑖 𝑠𝑖𝑛

π+2×1×π

6
=

2(cos
3π

6
+ 𝑖 sin

3π

6
= 2𝑐𝑖𝑠

π

2
  

𝑤2 = 2(cos
π+2×2×π

6
+ 𝑖 𝑠𝑖𝑛

π+2×2×π

6
=

2(cos
5π

6
+ 𝑖 sin

5π

6
= 2𝑐𝑖𝑠

5π

6
  

𝑤3 = 2(cos
π+2×3×π

6
+ 𝑖 𝑠𝑖𝑛

π+2×3×π

6
=

2(cos
7π

6
+ 𝑖 sin

7π

6
= 2𝑐𝑖𝑠

7π

6
  

𝑤4 = 2(cos
π+2×4×π

6
+ 𝑖 𝑠𝑖𝑛

π+2×4×π

6
=

2(cos
9π

6
+ 𝑖 sin

9π

6
= 2𝑐𝑖𝑠

3π

2
  

𝑤5 = 2(cos
π+2×5×π

6
+ 𝑖 𝑠𝑖𝑛

π+2×5×π

6
=

2(cos
11π

6
+ 𝑖 sin

11π

6
= 2𝑐𝑖𝑠

11π

6
  

The following image shows the representation 

of these answers on the complex plane. 

 

As visible from the image above, the angles 

formed by two consecutive roots are all 

congruent. 

Ex2) Given that 𝑤8 –  𝑖 =  0, find the roots. 

By the addition property of equality, 𝑧 = 𝑖. The 



polar form of this complex number is cos
𝜋

2
+

𝑖 sin
𝜋

2
, since 𝑟 = 1 and 𝜃 = 

𝜋

2
. Since we want to 

find the 8th root of this complex number, we can 

represent this as 𝑧 = 𝑤8 = cos
𝜋

2
+ 𝑖 sin

𝜋

2
. 

Substituting 
𝜋

2
 for 𝜃, 1 for 𝑟, and 8 for 𝑛, we 

can solve for 𝑘 = 0, 1, 2, 3, 4, 5, 6, 7. 

𝑤0 = cos (
𝜋

2
+π

8
) + 𝑖 sin (

𝜋

2
+π

8
) = cos

𝜋

16
+

𝑖 𝑠𝑖𝑛
𝜋

16
= 𝑐𝑖𝑠

𝜋

16
  

𝑤1 = cos (
π+2π

8
) + 𝑖 sin (

π+2π

8
) = cos

5𝜋

16
+

𝑖 𝑠𝑖𝑛
5𝜋

16
= 𝑐𝑖𝑠

5𝜋

16
  

𝑤2 = cos (
π+4π

8
) + 𝑖 sin (

π+4π

8
) = cos

9𝜋

16
+

𝑖 𝑠𝑖𝑛
9𝜋

16
= 𝑐𝑖𝑠

9𝜋

16
  

𝑤3 = cos (
𝜋

2
+6π

8
) + 𝑖 sin (

𝜋

2
+6π

8
) = cos

13𝜋

16
+

𝑖 𝑠𝑖𝑛
13𝜋

16
= 𝑐𝑖𝑠

13𝜋

16
  

𝑤4 = cos (
𝜋

2
+8π

8
) + 𝑖 sin (

𝜋

2
+8π

8
) = cos

17𝜋

16
+

𝑖 𝑠𝑖𝑛
17𝜋

16
= 𝑐𝑖𝑠

17𝜋

16
  

𝑤5 = cos (
𝜋

2
+10π

8
) + 𝑖 sin (

𝜋

2
+10π

8
) =

cos
21𝜋

16
+ 𝑖 𝑠𝑖𝑛

21𝜋

16
= 𝑐𝑖𝑠

21𝜋

16
  

𝑤6 = cos (
𝜋

2
+12π

8
) + 𝑖 sin (

𝜋

2
+12π

8
) =

cos
25𝜋

16
+ 𝑖 𝑠𝑖𝑛

25𝜋

16
= 𝑐𝑖𝑠

25𝜋

16
  

𝑤7 = cos (
𝜋

2
+14π

8
) + 𝑖 sin (

𝜋

2
+14π

8
) =

cos
29𝜋

16
+ 𝑖 𝑠𝑖𝑛

29𝜋

16
= 𝑐𝑖𝑠

29𝜋

16
  

Ex3) Given that 𝑤3 –  4√3̅–  4𝑖 =  0, find the 

roots. By the addition property of equality, 𝑧 =

 4√3̅  +  4𝑖 . The polar form of this complex 

number is 8 (cos
𝜋

6
+ 𝑖 sin

𝜋

6
). Since we want 

the 3rd root of this complex number, we can 

represent this as 𝑧 =  𝑤3  =  8 (cos
𝜋

6
+

𝑖 sin
𝜋

6
). Substituting 8 for 𝑟, 

𝜋

6
 for 𝜃, and 3 for 

𝑛, we can use the formula to calculate the value 

for 𝑘 = 0, 1, 2. 

𝑤0 = 2(cos
𝜋

6
+0π

3
+ 𝑖 sin

𝜋

6
+0π

3
) = 2(cos

𝜋

18
+

𝑖 𝑠𝑖𝑛
𝜋

18
) = 2𝑐𝑖𝑠

𝜋

18
  

𝑤1 = 2(cos
𝜋

6
+2π

3
+ 𝑖 sin

𝜋

6
+2π

3
) = 2(cos

13𝜋

18
+

𝑖 𝑠𝑖𝑛
13𝜋

18
) = 2𝑐𝑖𝑠

13𝜋

18
  

𝑤2 = 2(cos
𝜋

6
+4π

3
+ 𝑖 sin

𝜋

6
+4π

3
) = 2(cos

25𝜋

18
+

𝑖 𝑠𝑖𝑛
25𝜋

18
) = 2𝑐𝑖𝑠

25𝜋

18
  

The Advantage of Using the Polar Form 

The multiplication formula, division formula, 

and De Moivre’s theorem all require the use of 

polar forms. These theorems facilitate the 

calculation of complex numbers. As it can be 

observed by solving the example problems listed 

above, without having the polar form of a 

complex number, it takes a very long time and 

it is very difficult to calculate complex numbers. 

In example problem 1 of the multiplication and 

division section, the numbers were simple and 

easy to expand. However, if the numbers were 

more complicated and harder to expand, 

solving that example would take a very long 

time. Also, in example problem 2 of the De 



Moivre’s theorem section, it was not very 

difficult since the complex number was raised 

to the 6th power. However, if it was raised to the 

power of a much higher number, it would be 

very difficult and time consuming to use the 

standard form. 

On the other hand, if we have the polar form of 

a complex number, it is much easier to calculate 

because there are formulas and theorems. 

Problem - 2021 ROSS 

A polynomial 𝑓(𝑥) has the factor-square 

property (or FSP) if 𝑓(𝑥) is a factor of 𝑓(𝑥2). For 

instance, 𝑔(𝑥) = 𝑥 − 1 and ℎ(𝑥) = 𝑥 have FSP, 

but 𝑘(𝑥) = 𝑥 + 2 does not. Multiplying by a 

nonzero constant “preserves” FSP, so we restrict 

attention to polynomials that are monic (i.e., 

have 1 as highest degree coefficient). 

Setup and Conditions 

Let 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 be a 

polynomial with roots 𝑟1, 𝑟2, 𝑟3, …, 𝑟n. If this 

polynomial has the factor square property, 𝑓(𝑥2) 

= 𝑞(𝑥)𝑓(𝑥), where 𝑞(𝑥) is the quotient when 

𝑓(𝑥2) is divided by 𝑓(𝑥). By substituting 𝑟1 into 

𝑥, 𝑓(𝑟
2

1) = 𝑞(𝑟1)𝑓(𝑟1). Since 𝑟1 is a root of 𝑓(𝑥), 

𝑓(𝑟1) = 0 and 𝑓(𝑟
2

1) = 0. Using the same concept, 

𝑟
2

2 , 𝑟
2

3, … , 𝑟2 are all roots of 𝑓(𝑥). However, 

since there can be a maximum of 𝑛 roots, for 

each 𝑟𝑖, where {𝑖|𝑖 ∈ ℤ, 1 ≤ 𝑖 ≤ 𝑛}, there exists a 

value 𝑗, where {𝑗|𝑗 ∈ ℤ, 1 ≤ 𝑗 ≤ 𝑛}. Each root can 

be expressed in the polar form of a complex 

number: 𝑟𝑘 = 𝑚𝑘(cos 𝜃𝑘 + 𝑖 sin 𝜃𝑘). Now, the 

conditions of the magnitudes can be divided 

into 4 cases. 

Case 1: 𝑚𝑘 > 1 

As mentioned before, there needs to exist a 

𝑟𝑗  =  𝑟
2

𝑘. Using the De Moivre theorem, 𝑟𝑗  =

 𝑟
2

𝑘 = 𝑚
2

𝑘(cos 2𝜃𝑘 +  𝑖 sin 2𝜃𝑘). Since 𝑚𝑘 > 1, 

𝑚
2

𝑘 > 𝑚𝑘 and |𝑟𝑗| > |𝑟𝑘|. However, since the 

modulus keeps on increasing, 𝑚𝑘 cannot be 

greater than 1. Otherwise, there would not exist 

a 𝑟𝑗  =  𝑟
2

𝑘 . Therefore, no root has modulus 

greater than 1. 

Case 2: 0 < 𝑚𝑘 < 1 

Using the same concept mentioned in case 1, 

𝑟𝑗  =  𝑟
2

𝑘 = 𝑚
2

𝑘(cos 2𝜃𝑘 +  𝑖 sin 2𝜃𝑘. In this 

case, since the modulus keeps on decreasing, 𝑚𝑘 

cannot be a value greater than 0 and less than 

1. Otherwise, there would not exist a 𝑟𝑗  =  𝑟
2

𝑘. 

Therefore, no root has 0 < 𝑚𝑘 < 1. 

Case 3: 𝑚𝑘 = 0 

If 𝑚𝑘 = 0, since 02 = 0, there exists a 𝑟𝑗  =  𝑟
2

𝑘. 

Therefore, 𝑚𝑘 can be equal to 0. In other words, 

r𝑘 = 𝑚𝑘(cos 𝜃𝑘 + 𝑖 sin 𝜃𝑘) = 0 (cos 𝜃𝑘 + 𝑖 sin 𝜃𝑘) 

= 0. 

Case 4: 𝑚𝑘 = 1 

If 𝑚𝑘 = 1, r𝑘 can be expressed as cos 𝜃𝑘 + 𝑖 sin 

𝜃𝑘 and 𝑟𝑗  =  𝑟
2

𝑘= cos 2𝜃𝑘 + 𝑖 sin 2𝜃𝑘. Since 12 

= 1, 𝑚𝑘 can be equal to 1. 

With these 4 cases, all roots have a modulus of 

0 or 1. Also, it is important to note that 𝜃𝑗 ≡ 



2𝜃𝑘 (mod 2𝜋). The reason for using (mod 2𝜋) 

is, if the difference between the arguments of 

two complex numbers is a multiple of 2𝜋, the 

two complex numbers are the same. 

Given a polynomial with real coefficients, if 𝑎 + 

𝑏𝑖 is a root, then 𝑎 − 𝑏𝑖 is also a root, which 

means that if cos 𝜃 + 𝑖 sin 𝜃 is a root, cos(−𝜃) + 

𝑖 sin(−𝜃) is also a root. 

a) Are 𝒙  and 𝒙 − 𝟏  the only monic FSP 

polynomials of degree 1? 

A monic polynomial of degree 1 can be 

represented as 𝑓(𝑥) = 𝑥 + 𝑎. In order for 𝑓(𝑥) to 

satisfy FSP, 𝑓(𝑥2) = 𝑓(𝑥) × 𝑞(𝑥). Substituting −𝑎 

for 𝑥 into this equation yields 𝑓((−𝑎)2) = 𝑓(−𝑎) 

× 𝑞(−𝑎) because 𝑓(−𝑎) = 0. Thus, 𝑎2 + 𝑎 = 0 

and 𝑎 = 0 or −1. Therefore, 𝑥 and 𝑥 − 1 are the 

only monic FSP polynomials of degree 1. 

b) List all the monic FSP polynomials of 

degree 2. Some of them are products of FSP 

polynomials of smaller degree. For instance, 

𝒙𝟐  and 𝒙𝟐 − 𝒙  arise from degree 1 cases. 

However, 𝒙𝟐 − 𝟏  and 𝒙𝟐 + 𝒙 + 𝟏  are 

“new,” not expressible as ax product of two 

smaller FSP polynomials. Which polynomials 

are new? 

Since the polynomial has degree 2, there can be 

a maximum of two roots. As mentioned 

previously, a root can be expressed in the polar 

form of a complex number: 

𝑟(cos 𝜃 + 𝑖 sin 𝜃). There can be three different 

cases that satisfy the properties listed above. 

Case 1: Both roots have magnitudes of 0. 

If both roots are 0, there is only one possible 

polynomial: 𝑥2. 

Case 2: The magnitude of one root equals 0 and 

that of the other root equals 1. 

If |𝑟| = 1, the root can be expressed as cos 𝜃 + 

𝑖 sin 𝜃. As mentioned previously, there are two 

conditions to satisfy: 2𝜃 ≡ 𝜃 (mod 2𝜋) and 𝜃 ≡ 

−𝜃 (mod 2𝜋). Subtracting 𝜃 from both sides of 

the first condition yields 𝜃 ≡ 0 (mod 2𝜋) and 

adding 𝜃 to both sides of the second condition 

yields 2𝜃 ≡ 0(mod 2𝜋). So, 𝜃 = 2𝜋𝑛 and 2𝜃 = 

2𝜋𝑛. Both of these equations can be satisfied 

only if 𝜃 = 0. Therefore, the only possible 

polynomial in this case is 𝑥(𝑥 − 1) = 𝑥2 − 𝑥. 

Case 3: Both roots have magnitudes of 1. This 

case can be divided into two subcases: 

3-1: There are two real roots. 

There are only two possible roots in this case: 1 

and −1. However, if −1 is a root, then 1 also 

has to be a root. Therefore, there are two 

possible combinations: (𝑥 − 1)2 = 𝑥2 − 2𝑥 + 1 

and (𝑥 + 1)(𝑥 − 1) = 𝑥2 − 1. 

3-2: There are two complex roots which form a 

conjugate pair. 

The two roots can be expressed as cos 𝜃 + 𝑖 sin 

𝜃 and cos(−𝜃) + 𝑖 sin(−𝜃). Taking the first root, 

in order to satisfy the conditions that 2𝜃 ≡ 

𝜃(mod 2𝜋) and 𝜃 ≡ 0 (mod 2𝜋), 𝜃 = 2𝜋𝑛. This 

would give a real root, which does not count in 

this case. 

Now, taking the second root, the conditions are 



2𝜃 ≡ −𝜃(mod 2𝜋) and 3𝜃 ≡ 0 (mod 2𝜋), which 

means that 3𝜃 = 2𝜋𝑛 and 𝜃 =  
2𝜋𝑛

3
. So, 𝜃 = 

2𝜋

3
 

or 
4𝜋

3
. By substituting, the first root is cos

2𝜋

3
+

 i sin
2𝜋

3
=  − 

1

2
 +  

√3̅

2
I, and the second root is 

𝑐𝑜𝑠
4𝜋

3
+  𝑖 𝑠𝑖𝑛

4𝜋

3
=  − 

1

2
 + 

√3̅

2
𝑖.  So, the 

polynomial is (𝑥 – (−
1

2
 +

 
√3̅

2
𝑖)) (𝑥 – (− 1 −  √3𝑖)) =  𝑥2  +  𝑥 +  1. 

Therefore, the monic FSP polynomials of 

degree 2 are  𝑥2,  𝑥2  − 𝑥,  𝑥2  − 2𝑥 + 1,  𝑥2  

− 1, and 𝑥2  + 𝑥 + 1. Among these 

polynomials,  𝑥2  − 1 and  𝑥2  − 𝑥 + 1 are 

new. 

c) List all the new monic FSP polynomials of 

degree 3. 

Since the polynomial has degree 3, there can be 

a maximum of 3 roots. There can be two cases. 

Case 1: There are 3 real roots. 

We can figure out the polynomials by simply 

listing out all of the possibilities, using the 

property that only the numbers 0, 1, −1 would 

work and that −1 can only be a root if 1 is also 

a root. 

(0, 0, 0) → 𝑥3. This is not new since it can be 

represented as 𝑥2 × 𝑥. 

(0, 0, 1) → 𝑥2(𝑥 − 1). This is not new since 𝑥2 

and 𝑥 − 1 are from lower degrees.  

(0, 1, 1) → 𝑥(𝑥 − 1)2. This is not new since 𝑥2 

and (𝑥 − 1)2 are from lower degrees.  

(0, −1, 1) → 𝑥(𝑥2 − 1). This is not new since 𝑥 

and 𝑥2 − 1 are from lower degrees.  

(−1, 1, 1) → (𝑥 + 1)(𝑥 − 1)2. This is not new 

since it equals (𝑥2 − 1)(𝑥 − 1). 

(1, 1, 1) → (𝑥 − 1)3. This is not new since it 

equals (𝑥 − 1)2(𝑥 − 1). 

(−1, −1, 1) → (𝑥 + 1)2(𝑥 − 1). This is new since 

it cannot be represented as a product of two 

lower degree monic FSP polynomials. 

Case 2: There is one real root and two complex 

roots (one conjugate pair). 

As stated before, the only possible real roots are 

0 and 1. (-1 can’t be a root without 1). The next 

step is to figure out the complex roots that 

comply with the properties stated above. 

Case 2-1: 

2θ ≡ θ (mod 2π) 

θ ≡ 0 (mod 2π) 

In this case, the root is real. Therefore, there are 

no complex roots in this case. 

Case 2-2: 

2θ ≡ −θ (mod 2π) 

3θ ≡ 0 (mod 2π) 

3θ = 2πn, where n ∈ ℤ 

𝜃 =
2𝜋𝑛

3
 

𝜃 = 0,
2𝜋

3
,
4𝜋

3
 

If 𝜃 =
2𝜋𝑛

3
, the rectangular form of the root is 



−
1

2
−

√3̅

2
𝑖 and if 𝜃 =  

4𝜋

3
, the rectangular form 

of the root is − 1 + √3 𝑖 . If 𝜃 = 0, the root is 

real and will be one of the roots already listed in 

the previous degree. 

Therefore, the possible combinations of roots 

are: 

(0, − 
1

2
−

√3̅

2
𝑖, − 

1

2
+

√3̅

2
𝑖) → 𝑥(𝑥2 + 𝑥 + 1). 

This is not new since 𝑥 and (𝑥2 + 𝑥 + 1) are 

from lower degrees. 

(1, −
1

2
−

√3̅

2
𝑖, − 1 +  √3𝑖) →  (𝑥 −

 1)(𝑥2 +  𝑥 +  1). This is also not new since 𝑥 

− 1 and (𝑥2 +  𝑥 +  1)  are from lower 

degrees. 

The problem also mentions that there are some 

polynomials with complex coefficients. 

If we let 𝛼, 𝛽, and 𝛾 be the three complex roots 

of the polynomial, by the properties listed 

above, 𝛽 = 2𝛼 and 𝛾 = 4𝛼. So, the roots are 𝛼, 

2𝛼, and 4𝛼. Now, there can be two different 

cases: 8𝛼 ≡ α (mod 2π) and 8𝛼 ≡ 2α (mod 2π). 

If we take the first case, subtracting 𝛼 from both 

sides yields 7𝛼 ≡ 0 (mod 2π). Therefore, 7𝛼 = 

2𝜋𝑛 and 𝛼 =  
2𝜋𝑛

7
. If 𝑛 = 1, the roots are 

2𝜋

7
, 

4𝜋

7
, and 

8𝜋

7
. The list of roots stops there because 

16𝜋

7
 ≡ 

2𝜋

7
 (mod 2π). So, the polynomial is 

(𝑥 − 𝑐𝑖𝑠 (
2𝜋

7
)) (𝑥 − 𝑐𝑖𝑠 (

4𝜋

7
)) (𝑥 − 𝑐𝑖𝑠 (

8𝜋

7
)). 

By converting to the rectangular form and 

expanding, the polynomial is 𝑥3 + 0.5𝑥2 −

0.5𝑥 − 1 + (−1.3𝑥2 − 1.3𝑥 + 0.005056)𝑖. 

If we take the next case, subtracting 2𝛼 from 

both sides yields 6𝛼 ≡ 0 (mod 2π). So, 𝛼 =

2𝜋𝑛

6
 =  

𝜋𝑛

3
. If 𝑛 = 1, the roots are 

𝜋

3
,

2𝜋

3
, and 

4𝜋

3
. 

Again, the list stops here because 
8𝜋

3
≡

2𝜋

3
 

(mod 2π). Therefore, the polynomial is (𝑥 −

𝑐𝑖𝑠 (
𝜋

3
)) (𝑥 − 𝑐𝑖𝑠 (

2𝜋

3
)) (𝑥 − 𝑐𝑖𝑠 (

2𝜋

3
)).  By 

converting to the rectangular form and 

expanding, 

(2𝑥−1)(𝑥2+𝑥+1)

2
−

(√3̅(𝑥2+𝑥+1)

2
𝑖 = 𝑥3 + (

1

2
−

√3̅

2
𝑖) 𝑥2 + (

1

2
−

√3̅

2
) 𝑥 − (

1

2
+

√3̅

2
).  

This polynomial is new because none of the 

polynomials from previous degrees have 

complex coefficients. 

Therefore, the new monic FSP polynomials of 

degree 3 are: 

(𝑥 +  1)2(𝑥 −  1)  

𝑥3 + 0.5𝑥2 − 0.5𝑥 − 1 + (−1.3𝑥2 − 1.3𝑥 +

0.005056)𝑖.  

𝑥3 + (
1

2
−

√3̅

2
𝑖) 𝑥2 + (

1

2
−

√3̅

2
) 𝑥 − (

1

2
−

√3̅

2
).  

Can you make a similar list in degree 4? 

Case 1: There are 4 real roots. 

Using the properties from above, we can list out 

all of the possible outcomes: 

(0, 0, 0, 0) → 𝑥4. This is not new since it can be 

represented as 𝑥2𝑥2. 

(0, 0, 0, 1) → 𝑥3(𝑥 − 1). This is not new. 



(0, 0, 1, 1) → 𝑥2(𝑥 − 1)2. This is not new. 

(0, 1, 1, 1) → 𝑥(𝑥 − 1)3. This is not new. 

(1, 1, 1, 1) → (𝑥 − 1)4. This is not new. 

(0, 0, −1, 1) → 𝑥2(𝑥2 − 1). This is not new. 

(0, −1, 1, 1) → 𝑥(𝑥 − 1)2(𝑥 + 1). This is not new. 

(−1, 1, 1, 1) → (𝑥 − 1)3(𝑥 + 1). This is not new. 

(−1, −1, 1, 1) → (𝑥 + 1)2(𝑥 − 1)2. This is not 

new. 

(−1, −1, −1, 1) → (𝑥 + 1)3(𝑥 − 1). This is not 

new. 

(0, −1, −1, 1) → 𝑥(𝑥 + 1)2(𝑥 − 1). This is not 

new. 

Case 2: There are 2 complex roots and 2 real 

roots. 

Case 2-1: The two real roots are 1 and 1. 

In this case, the arguments can be 0, 0, θ, or 

−θ. 

Case 2-1-1: 

2θ ≡ 0 (mod 2π) 2θ = 0 + 2πn 

𝜃 = 𝜋𝑛 

This would lead to a real solution. 

Case 2-1-2: 

2𝜃 ≡  𝜃 (𝑚𝑜𝑑 2𝜋)  

𝜃 =  2𝜋𝑛  

This would also lead to a real solution. 

Case 2-1-3: 

2𝜃 ≡  −𝜃 (𝑚𝑜𝑑 2𝜋)  

3𝜃 =  2𝜋𝑛  

𝜃 =
 2𝜋𝑛

3
  

𝜃 =
 2𝜋

3
,

 4𝜋

3
  

2-1-3-1: 𝜃 =
 2𝜋

3
   

The arguments of the two complex roots are 

 2𝜋

3
, −

 2𝜋

3
 = 

 4𝜋

3
 

The four roots are 1, 1, 𝑐𝑖𝑠 (
 2𝜋

3
) , 𝑐𝑖𝑠 (

 4𝜋

3
). 

The polynomial from these roots is:  

(𝑥 − 1)2 (𝑥 − (− 
 1

2
+

 √3̅

2
𝑖))(𝑥 − (

 1

2
+

 √3̅

2
𝑖)) 

=  (𝑥 −  1)2(𝑥2  +  𝑥 +  1)  

2-1-3-2 θ =
 2𝜋

3
   

The arguments of the roots are 
 4𝜋

3
,−

 4𝜋

3
 = 

 2𝜋

3
   

This would lead to the same polynomial as case 

2-1-3-2.  

Case 2-2: The two real roots are 1 and −1. In 

this case, the arguments are 0, 𝜋, 𝜃, −𝜃. 

Case 2-2-1: 

2θ ≡ 0 (mod 2π) 

Taking case 2-1-1 into consideration, this would 

lead to a real solution. 

Case 2-2-2: 

2θ ≡ θ (mod 2π) 

Taking case 2-1-2 into consideration, this would 



lead to a real solution. 

Case 2-2-3: 

2θ ≡ π (mod 2π)  

2𝜃 − 𝜋 = 2𝜋𝑛 

2𝜃 = 𝜋 + 2𝜋𝑛 

𝜃 = 
𝜋(2𝑛 + 1)

2
 

𝜃 = 
 𝜋

2
,

 3𝜋

2
 

The polynomial from the resulting roots is: 

(𝑥 − 1)(𝑥 + 1)(𝑥 − 𝑖)(𝑥 + 𝑖) 

= (𝑥2 − 1)(𝑥2 + 1) = 𝑥4 − 1. This is a new 

polynomial. 

Case 2-2-4: 

2θ ≡ −θ (mod 2π) 

Taking case 2-1-3 into consideration, 𝜃 = 
 2𝜋

3
, 

 4𝜋

3
. 

The polynomial resulting from these roots is: 

(𝑥 − 1)(𝑥 + 1) (𝑥 − (
 1

2
+

 √3̅

2
𝑖)) (𝑥 −

(−
 1

2
−

 √3̅

2
𝑖))  

=  (𝑥 − 1)(𝑥 + 1)(𝑥2 + 𝑥 + 1)  

Case 2-3: The real roots are 1 and 0. 

In this case, the arguments are 0, 0, 𝜃, −𝜃. 

Case 2-3-1: 

2θ ≡ 0 (mod 2π) 

Taking case 2-1-1 into consideration, this would 

lead to a real solution. 

Case 2-3-2: 

2θ ≡ θ (mod 2π) 

Taking case 2-1-2 into consideration, this would 

lead to a real solution. 

Case 2-3-3: 

2θ ≡ −θ (mod 2π) 

Taking case 2-1-3 into consideration, 𝜃 = 
 2𝜋

3
, 

 4𝜋

3
. 

The polynomial resulting from these roots is: 

𝑥(𝑥 − 1) (𝑥 − (−
 1

2
+

 √3̅

2
𝑖)) (𝑥 − (−

 1

2
−

 √3̅

2
𝑖))  

= 𝑥 (𝑥 – 1)(𝑥2 + 𝑥 + 1) 

Case 2-4: The real roots are 0 and 0. 

Case 2-4-1: 

2θ ≡ 0 (mod 2π) 

Taking case 2-1-1 into consideration, this would 

lead to a real solution. 

Case 2-4-2: 

2θ ≡ θ (mod 2π) 

Taking case 2-1-2 into consideration, this would 

lead to a real solution. 

Case 2-4-3: 

2θ ≡ −θ (mod 2π) 



Taking case 2-1-3 into consideration, 𝜃 = 
 2𝜋

3
, 

 4𝜋

3
. 

The polynomial resulting from these roots is: 

𝑥2 (𝑥 − (−
 1

2
+

 √3̅

2
𝑖)) (𝑥 − (−

 1

2
−

 √3̅

2
𝑖))  

= 𝑥2(𝑥2 + 𝑥 + 1  

Case 3: There are 4 complex roots (2 pairs of 

complex conjugate roots). In this case, the 

arguments can be represented as 𝜃, −𝜃, 𝜙, −𝜙. 

Case 3-1 

2𝜃 ≡  𝜃 (𝑚𝑜𝑑 2𝜋)  

This implies that the root with argument 𝜃 is 

real. 

Case 3-2 

2𝜃 ≡  −𝜃 (𝑚𝑜𝑑 2𝜋)  

3𝜃 ≡  0 (𝑚𝑜𝑑 2𝜋)  

3𝜃 =  2𝜋𝑛  

𝜃 =
2𝜋𝑛

3
  

𝜃 =
2𝜋

3
,

4𝜋

3
  

When θ = 
2𝜋

3
, the four arguments are 

2𝜋

3
 , − 

2𝜋

3
 = 

4𝜋

3
, ϕ, and −ϕ. 

When θ = 4𝜋, the four arguments are 
4𝜋

3
, − 

4𝜋

3
 

= 
2𝜋

3
, ϕ, and −ϕ. 

Since these two cases lead to the same 

arguments, the four arguments can be 

represented as 
2𝜋

3
 , 

4𝜋

3
,, ϕ, and −ϕ. 

Case 3-2-1 

2𝜙 ≡  −𝜙 (𝑚𝑜𝑑 2𝜋)  

𝜙 =  
2𝜋

3
,

4𝜋

3
  

Case 3-2-1-1 

𝜙 =  
2𝜋

3
  

The arguments are 
2𝜋

3
,

4𝜋

3
,
2𝜋

3
, and − 

2𝜋

3
=

4𝜋

3
.  

The resulting polynomial is (𝑥2 + 𝑥 + 1)2 = 𝑥4 

+ 2𝑥3 + 3𝑥2 + 2𝑥 + 1. This polynomial is not 

new. 

Case 3-2-1-2 

𝜙 =  
4𝜋

3
  

The arguments are 
2𝜋

3
,

4𝜋

3
,
4𝜋

3
, and − 

4𝜋

3
=

2𝜋

3
. 

This would yield the same polynomial as that of 

case 3-2-1-1. 

Case 3-2-2 

2𝜙 ≡
2𝜋

3
(𝑚𝑜𝑑 2𝜋)  

2𝜙 ≡ (
2𝜋

3
+ 2𝜋𝑛)  

𝜙 =  
𝜋

3
+ 𝑛𝜋 =

1

3
+ 𝑛)𝜋  

𝜙 =  
𝜋

3
,

4𝜋

3
  

Case 3-2-2-1 

𝜙 =  
𝜋

3
  

The arguments are 
2𝜋

3
,

4𝜋

3
,

𝜋

3
𝑎𝑛𝑑 −

𝜋

3
=

5𝜋

3
. 

The resulting polynomial is (𝑥2 + 𝑥 +

1)(𝑥2 − 𝑥 + 1). This is a new polynomial. 



 

Case 3-2-2-2 

𝜙 =  
4𝜋

3
  

The arguments 
2𝜋

3
,

4𝜋

3
,

4𝜋

3
𝑎𝑛𝑑 −

4𝜋

3
=

2𝜋

3
. 

This would lead to the same polynomial as case 

3-2-1-2. 

Case 3-2-3 

2𝜙 ≡
4𝜋

3
(𝑚𝑜𝑑 2𝜋)  

2𝜙 −
4𝜋

3
= 2𝜋𝑛)  

𝜙 =
2𝜋𝑛+

4𝜋

3

2
= 𝜋𝑛 +

2𝜋

3
  

𝜙 =
2𝜋

3
,

5𝜋

3
  

Case 3-2-3-1 

𝜙 =  
2𝜋

3
  

The arguments are 
2𝜋

3
,

4𝜋

3
,

2𝜋

3
𝑎𝑛𝑑 −

2𝜋

3
=

4𝜋

3
. 

This case would yield the same polynomial as 

case 3-2-1-2. 

Case 3-2-3-2 

𝜙 =  
5𝜋

3
  

The arguments are 
2𝜋

3
,

4𝜋

3
,

5𝜋

3
𝑎𝑛𝑑 −

5𝜋

3
=

𝜋

3
. 

This case would yield the same polynomial as 

case 3-2-2-1. 

Case 3-3 

2𝜃 ≡  𝜙 (𝑚𝑜𝑑 2𝜋)  

The four arguments are −2θ, 2θ, −θ, and θ. 

Case 3-3-1 

4𝜃 ≡  −2𝜃 (𝑚𝑜𝑑 2𝜋)  

6𝜃 ≡  0 (𝑚𝑜𝑑 2𝜋)  

6𝜃 =  2𝜋𝑛  

𝜃 =  
𝜋𝑛

3
  

𝜃 =  
𝜋

3
,

2𝜋

3
,

4𝜋

3
,

5𝜋

3
  

3-3-1-1: 𝜃=
𝜋

3
 

The four arguments are 
𝜋

3
, −

𝜋

3
=

5𝜋

3
,

2𝜋

3
𝑎𝑛𝑑 −

2𝜋

3
=

4𝜋

3
  

These arguments would yield the same 

polynomial as that of case 3-2-2-1. 

3-3-1-2: 𝜃 =  
2𝜋

3
 

The four arguments are 
2𝜋

3
, −

2𝜋

3
=

4𝜋

3
,

4𝜋

3
−

4𝜋

3
=

2𝜋

3
. 

These arguments would yield the same 

polynomial as that of case 3-2-1-2. 

3-3-1-3: 𝜃 =
4𝜋

3
 

The four arguments are 
4𝜋

3
, −

4𝜋

3
=

2𝜋

3
,

8𝜋

3
=

2𝜋

3
,

8𝜋

3
=

4𝜋

3
. 

These arguments would yield the same 

polynomial as that of case 3-2-1-2. 

3-3-1-4: 𝜃 =
5𝜋

3
 

The four arguments are 
5𝜋

3
, −

5𝜋

3
=

𝜋

3
,

10𝜋

3
=



4𝜋

3
−

10𝜋

3
= −

4𝜋

3
=

2𝜋

3
. 

These arguments would yield the same 

polynomial as that of case 3-2-2-1. 

Case 3-3-2 

4𝜃 ≡  2𝜃 (𝑚𝑜𝑑 2𝜋)  

2𝜃 =  2𝜋𝑛  

This case would lead to a real solution. 

Case 3-3-3 

4𝜃 ≡  −𝜃 (𝑚𝑜𝑑 2𝜋)  

5𝜃 ≡  0 (𝑚𝑜𝑑 2𝜋)  

5𝜃 =  2𝜋𝑛  

𝜃 =  
2𝜋𝑛

5
  

𝜃 =  
2𝜋

5
,

4𝜋

5
,

6𝜋

5
,

8𝜋

5
  

3-3-3-1: 𝜃 =  
2𝜋

5
 

ϕ =  
2𝜋

5
, −

2𝜋

5
  

𝑐𝑖𝑠 (
2𝜋

5
) =

√5̅−1

4
−

√2(√5+5)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

4
𝑖  

𝑐𝑖𝑠 (−
2𝜋

5
) =

√5̅−1

4
−

√2(√5+5)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

4
𝑖  

𝑓(𝑥) = (𝑥 – (
√5̅−1

4
−

√2(√5+5)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

4
𝑖))(𝑥 −

√5̅−1

4
−

√2(√5+5)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

4
𝑖) 

 =  𝑥4 + (1 − √5̅) 𝑥3 +  
7−√5̅

2
+ (1 −

√5̅) 𝑥 + 1 

≈ 𝑥4 − 1.24𝑥3 +  2.38𝑥2 − 1.24𝑥 + 1  

3-3-3-2: 𝜃 =
4𝜋

5
 

ϕ =  
4𝜋

5
, −

4𝜋

5
  

𝑐𝑖𝑠 (
4𝜋

5
) =

−(√5̅+1)

4
−

√−2(√5−5)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

4
𝑖  

𝑐𝑖𝑠 (−
4𝜋

5
) =

−(√5̅+1)

4
−

√−2(√5−5)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

4
𝑖  

𝑓(𝑥) = (𝑥 – (
−√5̅+1

4
−

√−2(√5−5)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

4
𝑖))(𝑥 −

(
−√5̅+1

4
−

√ −2(√5−5)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

4
𝑖  

≈  𝑥4 + 3.23𝑥3 + 4.62𝑥2 + 3.24𝑥 + 1  

3-3-3-3: 𝜃 =
6𝜋

5
 

∅ =
6𝜋

5
, −

6𝜋

5
  

𝑐𝑖𝑠 (
6𝜋

5
) =

−(√5̅+1)

4
−

√−2(√5−5)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

4
𝑖  

𝑐𝑖𝑠 (−
6𝜋

5
) =

−(√5̅+1)

4
−

√−2(√5−5)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

4
𝑖  

The polynomial would be the same as that of 

case 3-3-3-1. 

3-3-3-4: 𝜃 =
8𝜋

5
 

𝜙 =
8𝜋

5
, −

8𝜋

5
  

𝑐𝑖𝑠 (
8𝜋

5
) =

√5̅−1

4
−

√2(√5+5)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

4
𝑖  

𝑐𝑖𝑠 (−
8𝜋

5
) =

√5̅−1

4
−

√2(√5+5)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

4
𝑖  

The polynomial would be the same as that of 

case 3-3-3-2. 

Case 3-3-4 



4𝜃 ≡  𝜃 (𝑚𝑜𝑑 2𝜋)  

3𝜃 ≡  0 (𝑚𝑜𝑑 2𝜋)  

3𝜃 =  2𝜋𝑛  

𝜃 =  
2𝜋𝑛

3
  

𝜃 =  
2𝜋

3
,

4𝜋

3
  

Both values of θ have already been tested in 

previous cases. 

d) Are there monic FSP polynomials with real 

number coefficients, but some of those not 

integers? 

Cases 3-3-1, 3-3-2, and 3-3-3 from degree 4 

resulted in FSP polynomials with non-integer 

coefficients. The main difference with these 

three polynomials is the denominator of the 

angle before being converted to the rectangular 

form. These cases were special because they had 

a denominator of 5. Since it is very difficult to 

know the exact value of sin (
𝑛𝜋

5
)  and 

cos (
𝑛𝜋

5
), it is almost impossible to convert to 

rectangular form by hand. This is why the use 

of a calculator was necessary for these cases. So, 

the coefficients of these polynomials are not 

integers. 

Conclusion 

This paper was centered on the exploration of 

properties of complex numbers. The 

exploration of the polar form of complex 

numbers and its properties led to the next focus 

of the paper: solving a problem from 2021 

ROSS. Coming up with the proper “setup and 

conditions” took some time, as the first few 

trials faced interesting errors and limitations. 

Through the implementation of the polar form 

with roots of polynomials, the properties 

eventually became coherent. Coming up with 

the correct properties made the rest of the 

problem-solving process much smoother and 

clearer, as the implication of these properties 

facilitated the setup of cases and subcases. 


