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Introduction  

Dark matter, a fundamental concept in 

astrophysics, constitutes a significant yet elusive 

component of the universe. Despite its crucial 

role in cosmic structure, direct detection of dark 

matter remains challenging due to its non-

interaction with electromagnetic radiation. 

Abstract  

This study leverages advanced deep learning techniques, specifically Neural Score Matching (NSM) and 

Convolutional Neural Networks (CNNs), to accurately predict and recreate weak gravitational lensing 

data from the Cosmic Evolution Survey (COSMOS) field. Utilizing high-resolution imagery from the 

Hubble Space Telescope, rigorous preprocessing ensures data accuracy and reliability. Incorporating 

previous research results, the NSM and CNN methodologies enable accurate probabilistic 

reconstruction of weak gravitational lensing images. Results validated through simulations and 

application to actual COSMOS data demonstrate the model's ability to capture uncertainties and reveal 

complex spatial patterns, particularly in regions with massive clusters. This interdisciplinary approach 

enhances the precision of weak gravitational lensing analysis and significantly advances our 

understanding of the universe's structure, showcasing the potential of integrating deep learning with 

traditional astrophysical methods and contributing novel methodologies to astrophysics. 
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Understanding dark matter is essential for 

unraveling cosmic evolution, galaxy formation, 

and the universe's large-scale structure [1-3]. 

Weak gravitational lensing provides a unique 

observational method for studying dark matter. 

This phenomenon involves the bending and 

distortion of light from distant galaxies as it 

traverses the gravitational field of dark matter. 

By analyzing these subtle distortions, 

researchers can infer the distribution and 

concentration of dark matter, bridging the gap 

between theoretical models and observable 

phenomena [4-7]. 

The integration of deep learning in 

astrophysical research signifies a paradigm shift 

in data analysis and interpretation [8]. 

Advanced algorithms, such as neural score 

matching, revolutionize the analysis of complex 

datasets [9]. In dark matter detection, these 

techniques enable the extraction of nuanced 

information from gravitational lensing patterns, 

enhancing both accuracy and quality [10]. 

This study aims to synergize the observational 

strengths of weak gravitational lensing with the 

analytical capabilities of deep learning to 

enhance weak gravitational lensing data for 

dark matter research. The objectives are to 

refine the detection and predictive modeling of 

weak gravitational lensing, contributing novel 

methodologies to astrophysics. By combining 

advanced computational techniques with 

empirical data, this research not only enhances 

the precision of weak gravitational lensing data 

but also lays the groundwork for future 

explorations in the field. 

Literature Review 

In this study, a multidisciplinary approach is 

adopted, synergizing observational astrophysics, 

theoretical modeling, and advanced 

computational techniques from previous 

studies. The core objective is to amplify the 

detection and predictive modeling of dark 

matter distributions through the analysis of 

weak gravitational lensing effects enhanced by 

deep learning algorithms. The methodology 

encompasses a comprehensive process from 

data acquisition, preprocessing, and analysis to 

the implementation of advanced machine 

learning techniques. 

1. Weak Gravitational Lensing 

1.1. Fundamentals of Weak Gravitational 

Lensing 

Weak gravitational lensing is a phenomenon in 

which light from distant galaxies undergoes 

subtle distortions passing through foreground 

mass, analogous to the effect of light passing 

through a lens. In the context of dark matter, 

weak lensing assumes paramount importance as 

it offers an indirect means to detect and map 

the otherwise imperceptible mass. At its core, 

weak lensing embodies the capacity to deflect 

the trajectory of light, a prediction arising from 

Einstein's theory of General Relativity [4]. This 

deflection leads to slight elongation and 

magnification of background galaxy images, 

providing insights into the intervening dark 



matter's mass distribution. 

2. Lensing Effect Modeling 

The modeling of the lensing effect begins with 

the quantification of the distortion or shear of 

the galaxy images. The shear measurement is a 

critical aspect, as it is directly related to the 

underlying mass distribution causing the 

lensing. The degree of shear provides insights 

into the density and distribution of the dark 

matter along the line of sight. To model this, the 

observed ellipticities of galaxies are used as 

estimators of the gravitational shear. These 

ellipticities are measured from the shape 

parameters of the galaxy images, which are then 

analyzed statistically to determine the shear 

field. This process involves complex algorithms 

that rectify diverse observational biases and 

noise, ensuring that the shear map accurately 

represents the lensing effect [5]. 

Methodology 

1. Data Acquisition and Preprocessing 

1.1. Data Acquisition from the COSMOS 

Field 

Data acquisition for this study involves 

retrieving information from the Cosmic 

Evolution Survey (COSMOS) field through the 

archives of the Hubble Space Telescope. The 

selection process prioritizes regions within 

COSMOS with elevated galaxy densities to 

maximize observational efficacy. The COSMOS 

dataset provides high-resolution imagery 

capturing over two million galaxies, spanning 

an expanse of 2 square degrees in the celestial 

sphere. This rich dataset serves as the 

foundation for the analysis, providing a 

nuanced depiction of the universe essential for 

scrutinizing weak gravitational lensing effects. 

The suitability of COSMOS for this study stems 

from its expansive coverage and depth, 

facilitating an intricate examination of the 

subtle influences of dark matter on the 

deflection of light from distant galaxies. 

In this study, a dataset comprising 50,000 galaxy 

images sourced from the COSMOS field is 

meticulously analyzed to ensure a diverse 

representation of lensing phenomena. This 

broad dataset selection aims to encompass a 

wide array of gravitational lensing occurrences, 

enriching the study's analytical scope and depth. 

[Fig. 1] Hubble Space Telescope image of galaxy 

cluster Abell 3827 

1.2  Preprocessing of Astronomical Images 

Preprocessing of the COSMOS field data 

involves several critical procedures to uphold 

the accuracy and reliability of subsequent 



analyses.  Primarily, raw images undergo 

normalization and correction for instrumental 

biases using established techniques like flat-

fielding, which compensates for variations in 

detector sensitivity, and bias subtraction, aimed 

at eliminating electronic noise inherent in the 

detector. Subsequently, meticulous alignment 

and calibration of images are conducted 

employing Astropy. This step ensures the 

consistency and accuracy of any comparison or 

combination of data obtained from diverse 

wavelengths. Following calibration, the data 

undergoes filtering utilizing Scikit-learn to 

eliminate noise and artifacts that might 

introduce biases into the analysis. Such noise 

sources include cosmic rays, background 

radiation, and instrumental errors. The 

preprocessing stage plays a pivotal role in 

ensuring that data inputs into deep learning 

models maintain the highest quality, devoid of 

distortions that could compromise the study's 

outcomes [12]. 

1.3 Measurement and Calibration of Galaxy 

Shapes 

The measurement of galaxy shapes constitutes a 

pivotal component of weak gravitational lensing 

analysis. In this study, galaxy shapes are 

quantified using ellipticity and shear estimators. 

Ellipticity measures the elongation of a galaxy's 

shape, while shear refers to the distortion of the 

galaxy image due to lensing. However, these 

measurements are susceptible to various 

systematic errors, including atmospheric 

distortion for ground-based observations and 

instrumental distortions for space-based 

observations. To mitigate these effects, 

sophisticated calibration techniques are 

employed. 

These calibration techniques involve utilizing 

simulations to model and correct for the Point 

Spread Function (PSF) – the response of the 

imaging system to a point source – which can 

significantly affect shape measurements. The 

calibration process ensures that the ellipticity 

and shear measurements accurately reflect the 

lensing effects and are not biased by 

observational distortions. This step is critical in 

deriving reliable data for the subsequent 

gravitational lensing analysis and for training 

the deep learning models [13]. 

2.  Integration of Previous Study Results 

To enhance the effectiveness and accuracy of 

the model, the results of prior research on weak 

gravitational lensing are incorporated as 

foundational training data. These results 

encompass meticulously processed shear fields 

and their corresponding observational data, 

providing an empirically validated dataset. By 

utilizing this data, the model benefits from a 

diverse and robust foundation, an approach 

that ensures that the model is not only 

grounded in theoretical accuracy but also 

attuned to practical, observational constraints. 

3. Neural Score matching 

Neural Score Matching (NSM) is a sophisticated 

deep learning technique renowned for its ability 



to model complex probability distributions, 

making it particularly valuable in fields like 

astrophysics. Originally introduced by 

Hyvärinen [15], score matching is a method for 

estimating probability distributions without 

explicit density estimation. The 'score' 

represents the gradient of the log probability 

density function with respect to the data. 

Through training a neural network to 

approximate this gradient, the network gains an 

understanding of the underlying structure and 

complexity of the data distribution. This 

capability is crucial for our study, where the goal 

is to recreate gravitational lensing effects 

induced by dark matter. NSM is employed to 

interpret the intricate patterns of gravitational 

lensing, a task often challenging for statistical 

methods due to the inherent complexity and 

noise in the data [14]. This technique is 

particularly well-suited for analyzing weak 

lensing data, which, despite its subtlety, 

contains rich information about the 

distribution and properties of dark matter. 

4. Machine Learning Model 

A Convolutional Neural Network (CNN) is 

employed due to its proven effectiveness in 

handling and analyzing image data. This CNN 

is trained on both real and simulated images of 

gravitational lensing, ensuring the model's 

robustness and ability to generalize across 

various scenarios encountered in astronomical 

observations [8]. The training process entails 

adjusting the network to minimize the 

difference between the actual and predicted 

scores, a critical step in enabling the network to 

accurately model the distribution of lensing 

data. 

 The combination of NSM for interpreting 

gravitational lensing patterns and CNN for 

modeling the distribution of lensing data forms 

a robust methodology for our study, enabling 

accurate analysis and interpretation of weak 

lensing data in the context of dark matter 

research. 

Experiment and Result 

In the current study, a deep-learning-assisted 

approach is successfully applied to 

probabilistically reconstruct weak gravitational 

lensing images of the Hubble Space Telescope 

(HST) Cosmic Evolution Survey (COSMOS) 

field, leveraging a combination of empirical 

data and theoretical models. This methodology 

is grounded on the MassiveNuS suite of 

simulations, comprising 10,243 particles in a 

(512 h⁻¹Mpc)³ box, which generates 10,000 

mass maps through ray-tracing in adherence to 

gravitational lensing physics [16]. 

 

 



[Fig. 2] Validation on Simulated Data. Ground 

truth image (upper left), after binary mask 

(upper right), the model’s median result (lower 

left), and the model’s final result (lower right). 

Prior to application on the actual COSMOS 

field, the methodology undergoes validation on 

a simulated mock COSMOS lensing catalog. 

This simulation utilizes the actual distribution 

of galaxies in the COSMOS survey to construct 

a binary mask, incorporating realistic levels of 

noise to emulate observational conditions. The 

results, depicted in Figure 2, present the 

model’s median and final outcomes. These 

outcomes showcase notable variability in the 

data, underscoring the model's capacity to 

capture the underlying uncertainty inherent in 

noisy datasets. Specifically, the presence of a 

massive cluster in the bottom right corner of the 

field consistently appears across posterior 

samples, highlighting the robustness of the 

model. 

 

 

[Fig. 3] Actual COSMOS field image. Ground 

truth image (left), and the model’s top 3 results 

(2nd to 4th image). 

The application of the methodology to the 

actual COSMOS field results in a detailed 

reconstruction of weak gravitationally lensed 

data, representing an advancement in 

understanding the cosmic structure within the 

COSMOS field. Notably, this approach enables 

access to the full posterior distribution for 

interpreting these results. Figure 3 illustrates 

independent posterior samples from the central 

region of the map, revealing a bi-modal 

distribution in areas where a massive cluster is 

known to exist. This bi-modality, with the 

cluster appearing in some maps and not in 

others, allows for a robust quantification of the 

significance of this structure. 

These findings highlight the benefits of the 

proposed methodology, which effectively 

utilizes physical models and knowledge. By 

incorporating the known likelihood term, a 

theoretical prior on large scales, and numerical 

simulations for small-scale non-Gaussian priors, 

access to a full posterior distribution in high 

dimensions is achieved. This comprehensive 

approach optimally leverages our 

understanding of physical models and empirical 

data, showcasing the potential of deep learning 

in enhancing astrophysical analyses. 

Conclusion 

The study successfully reconstructs weak 

gravitationally lensed data in the Hubble Space 

Telescope COSMOS field using a novel deep-

learning-assisted methodology, representing a 

significant advancement in astrophysical 

research. By integrating Neural Score Matching 

with Convolutional Neural Networks, the 

gravitational lensing effects are interpreted with 

unprecedented accuracy. This approach not 

only provides detailed reconstructions of the 

COSMOS field but also reveals complex spatial 



patterns of weak gravitational lensing, 

particularly in regions with massive clusters. 

The implications of these findings are 

profound, enhancing the understanding of the 

universe's structure and paving the way for new 

methodologies in astrophysical analysis. This 

interdisciplinary approach, blending advanced 

machine learning techniques with traditional 

astrophysical methods, sets a new benchmark in 

the study of weak gravitational lensing and can 

be applied to other datasets for further 

explorations in cosmology. 

In conclusion, this work represents a significant 

step forward in unraveling the mysteries of weak 

gravitational lensing and exemplifies the 

potential of integrating machine learning in 

astronomical research. It opens new avenues for 

exploration in astrophysics and beyond, 

promising further insights into the intricate 

workings of the cosmos. 
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