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Abstract 

In today's scenario, deep learning has much application in daily living, such as health care, chatbots, 

entertainment, product recommendation, virtual sessions, etc. In the training phase, deep learning 

models train the datasets in which information privacy is stored locally through model parameters. 

However, some privacy concern issues still exist, so applying Differential privacy to the deep learning 

model is widely recognized for its traditional scenario in rigorous mathematical solutions. This paper 

revisits the Differential privacy stochastic gradient descent (SGD) method used to achieve good privacy 

protection. Then deploy the mechanism in the input, hidden, and output layer through pros and cons. 

Also, provide a broader outlook to this practice. 
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1. Introduction 

In this project, the state of the art that is machine 

learning methods are implemented with 

updated privacy-preserving policies and 

mechanisms with modest differential privacy. By 

demonstrating the track of detailed information 

of privacy loss, estimation on privacy loss 

empirically. Accuracy significantly improves 

when extensive data set trained from a data 

provider on a cloud server has significant and 

raised privacy concerns. However, preserving the 

privacy of data is a fundamental problem. 

Differential privacy has been a focal point in 

research and development in data privacy  

 

 

techniques. More recent DP applies to deep  

learning. A distortion method changes the 

existing raw data by adding statistical noise and 

data swapping while accessing processed data 

sets. The next session describes the fundamental 

terms on paper and the mechanisms used. 

2. Overview 

Differential privacy is a popular mechanism to 

train a machine learning model with bounded 

leakage about specific points in training data. 

Due to differential privacy, the model's accuracy 

was reduced. Here it demonstrates the data 



 

 
 

trained in neural networks through stochastic 

gradient descent (DP-SGD). Also, we overview 

the basic principles of deep learning. 

a) Differential  privacy:  

Differential privacy is a theory that provides us 

with specific mathematical models with 

guarantees of user data privacy. It aims to reduce 

any impact of any personal data on the overall 

result; this means one can make the same 

interference though it is not in the input of 

analysis. The result of differential privacy 

computation is immune to broad privacy attacks. 

This is achieved by tuned noise during the 

calculation to make it difficult for a hacker to 

identify any user. This also leads to erosion of 

accuracy. Privacy is measured by epsilon and is 

inversely proportional to privacy protection. 

Achieving epsilon differential privacy is an ideal 

case and is difficult to achieve in reality, and 

hence, we used (ε, δ) differential privacy. By 

using this, the Algorithm is ε –differentially with 

probability (δ-1). Differential privacy has some 

properties like composability, group privacy, and 

robustness in an information system. 

Composability use for the modular design of the 

mechanism. Group privacy implies the 

degradation of privacy in the dataset. Robustness 

means privacy is not affected by side 

information. Hence δ is to 0, the better. Additive 

noise mechanism includes an approximation of 

functionality by bounded sensitivity function as 

above, choosing additive noise parameters, and 

performing privacy analysis of results. 

 

b) Deep learning:  

Deep learning is widely used in machine 

learning tasks that define parameterized 

functions from input to output with 

fundamental building blocks. Likewise, affine 

transformation and a more straightforward non-

linear process. When individual data  (e.g., User 

habits, clinical records, media) are used to train 

a deep learning model, some features are 

recognized. So for this profound learning, use 

specific traditional techniques. L2 (loss 

function) regularisation protects the privacy of 

training data to prevent over-fitting. To enhance 

the security of the deep learning model with the 

aid of a differential privacy model, how much to 

add and where it should locate the noise in the 

deep network is the primary thing that should be 

carefully considered. Because any minute change 

can differ the layer by layer abstraction, the more 

diverse the application strategy of the deep 

learning model, the more secured system will be. 

3. Threats in deep learning: 

Currently, the Deep learning system additionally 

faces security issues. There are various risks 

involved in training data of the DL model as data 

owned by multiple services while demonstrating 

with training. To attempt these issues by third 

party system, various attempts are managed to 

reduce threats by applying traditional privacy 

policies like Differential privacy or secure 

multiparty computation. To summarise the 

privacy issue and securities in deep learning 

execution, there are domains in which 

insecurities countered are Attacks on the DL 



 

 
 

model: Two major types of attacks evasion and 

poison. Evasion attack related to inference phase 

where poison describes training phase.  

Defense of DL model: Various defense 

techniques include two large groups, evasion, 

and poisoning, Eg. Gradient masking, 

robustness, detection. 

Privacy attacks: These arise from service 

providers, information users. 

Defense against privacy breach: That is homo-

morphed encryption, Differential privacy. 

Recently collaborative learning is employed in 

deep understanding, in which local and 

centralized users take action to train the data. 

They train the Generative Adversarial 

Networks(GAN) to avoid theft. It generates 

prototypical samples with the same distributed 

data. The training phase always has the active 

user. During the prediction phase, privacy 

attacks have been discussed. It has three aspects, 

 

A. Membership interference attack: 

It is a black box threat. Membership interference 

has been studied in many different domains of 

study, from biomedical data to mobile services. 

It aims to detect the data generated is used for 

training or not. So this action can raise some 

privacy issues in the dataset as membership 

reveals the personal information. Training the 

attack model first forms the 'shadow model,' 

which is similar to the target model. Supervised 

training on shadow model and training by 

synthesized data with the same statistical feature 

as trained data. Furthermore, finally attack 

model was built. The principle of membership 

attack has a common aim as a differential privacy 

mechanism. Therefore most current privacy 

protection of differential privacy is used for 

membership attacks. 

 

B. Training data extraction: 

Privacy threat training data extraction in the 

white box in training. Several attacks in the 

Machine learning model based on network 

traffic classification by implementing support 

vector machine (SVM) and speech recognition 

software based on the Markov model. Extensive 

use of MLaaS in black box threats can become 

easily recognizable. In this setting, we should 

attempt to train our model for targeting the 

model's output into input data. We could 

recreate private data through this model 

inversion by intercepting output service data of 

the user's data and running it through the 

attacker. As we see, the left side is recreated data 

of the actual right side image.  

 

C. Model Extraction: 

This extraction model encounters the privacy 

issue when the model is trained on the user's 

privacy information. It extracts the parameter 

introduced on the model. The main intend of 

the attacker is to duplicate the model function, 

which prediction performance is the same as 

targeted, because of a close relation between 

model parameter and training data. Then 



 

 
 

privacy is evaluated after a leak of parameters 

through a black-box model. A model f^ which is 

similar to target one f is built through a 

continuous sample to the black box and 

recording the prediction vector. And then 

according to pathfinding decision tree of 

original data obtained. 

 

4. Preliminaries 

A. Definition: A randomized mechanism M:D    

R where D is the domain, R is a range which 

satisfies (ε, δ)-differential privacy for any two 

adjacent inputs d, d' and subset output. The 

trade-off between any privacy leakage is 

controlled by privacy budget parameters. As 

smaller the privacy budget, the minute leakage 

and robust protection. The randomized 

mechanism gives ε differential protection, which 

is a stronger one. 

B. Composition theorem: In which differential 

privacy has two privacy budgets that are 

sequential and parallel composition. 

1) Sequential composition- In which random 

mechanism M sequentially performs dataset 

D, each tool provides ε-Differential privacy. 

2) Parallel composition- In which random 

privacy mechanism M and data set D is 

divided into subparts (D1, D2, ….), the 

mechanism provides ε DP for every data set 

D and the final result will be of entire data 

set as max (ε1, ε2, …) DP. 

C. Sensitivity: Sensitivity defines query results 

on adjacent data sets, detecting output change 

due to a single sample in a hard case. Sensitivity 

f is based on query f and distributed data set. 

D. Privacy loss: It causes due to addition of 

random uneasiness in the Algorithm. Privacy 

loss is calculated at each step of the Algorithm 

during execution, and it demonstrates the 

overall privacy loss at the end, which the privacy 

accountant controls. 

E. Utility Measurement: It is measured by the 

amount of noise and errors in the set. The 

minute amount of noise also affects higher 

utility. Errors are tangled by the accuracy index 

phenomenon, which evaluates between private 

and non-private output.  

5. Our approach 

This is the central theory of the paper in which 

we focus on solution methods to privacy issues 

in deep learning. As differential privacy aims to 

ensure that regardless of the guarantee of 

personal user data, whether individual record 

included in the data or not, a query on result 

returns approximately the same data. Therefore, 

we need to know the maximum impact on 

personal data, which is possible by the 

Differential privacy algorithm. 

Differential privacy and deep learning 

Mechanism:  Differential privacy guarantees that 

the output of the deep learning model will not 

show statistical difference. In contrast, the 

model is being carried on adjacent datasets, 

which includes individual privacy. The 

mechanism's goal is training dataset privacy 

protection, Prevent information leakage in a 

black box and white box. Here is the approach 

of implementing differential privacy in deep 

learning. 



 

 
 

Differential privacy with SGD algorithm:  In 

this, we describe the more sophisticated 

approach used to control the influence of 

training data during training data, primarily in 

SGD method computation.   

The Algorithm executes the primary methods to 

train the model with 0 parameters by minimizing 

empirical loss function L(0). At each stage SGD, 

computation gradient ∇θL(θ, xi) for a random 

subset.  Compute the L2 norm for each gradient, 

find the average addition of noise to attain 

privacy protection, and finally take a step 

opposite of average gradient noise computation. 

We can also find the privacy loss function, which 

is based on privacy accountants. 

We normalize the running time of training data 

by expressing the number of epochs. Each epoch 

represents the expected bath number required to 

process the Algorithm; each epoch consists of 

N/L lots. Where N is dataset size and L is the lot 

size.   

Privacy accounting: While considering DP-

SGD, the issue is related to computing overall 

privacy cost to training datasets. The 

composability of  DP enables to implement 

'accountant' to compute cost and also 

accumulate the cost for future process. 

The Moment Accountant Details: Moment 

accountant is the privacy spending by 

considering the privacy loss as any variable and 

using its moment generating functions to 

understand that variable distribution, hence 

known as moment accountant. There is a lot of 

research going to understand the privacy losses 

that account for a particular noise distribution 

and privacy losses. In consideration with 

Gaussian noise, if we used σ in Algorithm to be  

√  2 logs 1.25 /δ / ɛ, we know standard 

argument hence each step becomes (ɛ, δ) 

differentially private concerning other. As the lot 

is a random sample pickup from the database, by 

applying the privacy amplification theorem, each 

step is (O (q ɛ), q δ), which is differential private 

concerning the whole database. Where q= L/N 

is called as sampling ratio per lot and ɛ ≤ 1. The 

strong composition theorem yields the best 

bond but does not take into account the 

particular noise distribution. A hence more 

robust accounting method is utilized, known as 

moments accountants.  

Using this theorem, we can prove that is (O(q ε√ 

T), δ ) differentially private for the correctly 

chosen setting of noise scale and clipping 

threshold.  Because of it, the bond is tighter in 

two ways it saves √log(1/ δ),  a factor in the ɛ 

part and Tq factor in δ part. As we want δ to be 

small and T >> 1/q, the saving at the end is 

significant. Through this combination theorem, 

by combining dataset libraries, we got the 

accuracy through epsilon DP-SGD privacy 

protection ε ≈ 0.94.  

Hyperparameter tuning: It is also known as 

hyperparameter optimization. It is a problem of 

choosing an optimal hyperparameter for 

algorithm learning purposes. It is a parameter 

whose value controls the learning process and 

tunes to balance accuracy, performance, and 

privacy. The optimization finds a 

hyperparameter that gives an optimal model to 



 

 
 

minimize predefined loss function on shared 

data and also return associated losses. If we try 

for some settings in hyperparameter, we can add 

privacy costs of all stages through the moment 

accountant. However, we are interested in 

account-model accuracy by modifying this 

setting; It will be better than previous ones. 

In our case, through model run with various 

datasets libraries by hyperparameter loop, the 

accuracy obtained as the trained model is ϵ value 

of 1.18. 

6. Implementations: 

We have implemented our approach that is DP-

SGD, on a deep learning model by a Differential 

algorithm with TensorFlow. The source code is 

from Apache license version 2.0. Our 

implementation mainly consists of two methods: 

A sanitizer that pre-processes the gradient to 

attain privacy and a privacy accountant who 

keeps track of training data. The code contains a 

snippet of  DPSGD_Optimizer that minimizes a 

loss function using a differentially private SGD 

and DP-Train dataset. Iteratively DPSGD 

optimizer works to bound the total privacy loss.  

A model trained with DP-SGD provides 

provable differential privacy guarantees to input 

data.  It having two vanilla SGD algorithm: 

1. The sensitivity of each gradient is bounded 

by clipping the gradient for each training 

point. This limits how much each training 

point can impact model parameters. 

2. Random noise is sampled and included to 

the clipped gradients to make it statistically 

impossible for each data point was added in 

the training dataset by comparing it with 

SGD when it operates with or without this 

specific data point training dataset. 

 

As we use tf.Keras to train CNN to recognize the 

handwritten numbers with the DP-SGD model 

provided by TensorFlow. Furthermore, By 

setting the learning model with hyper-parameter 

which having three parameters, 

a. l2_norm_clip (float) - To fix optimizer's 

sensitivity to personal training points. 

b. noise_multiplier (float) - Noise is sampled 

and added to training data. 

c. Micro batches (int) - Input data is split into 

micro-batches to improve utility. Input bath 

size should be a multiplier of the number of 

micro-batches. 

d. learning_rate (float) -  Higher learning rate, 

more the update matters. The learning rate 

is kept lower while training the data to 

coverage. 

By using hyperparameter values, reasonable 

accuracy was obtained with the moment 

account. In comparison, we are building a 

learning model to a convolutional neural 

network with a sequential definition. After that, 

vector loss is obtained by defining the optimizer 

and loss function discussed in the learning 

model. Losses, for example, are computing 



 

 
 

rather than mean values to manipulate each 

training point. 

This probability is sometimes called the privacy 

budget. A lower privacy budget ensures stronger 

privacy guarantees. If a single training point did 

not affect the outcome, then it is not memorized 

by Algorithm, and the individual's privacy is 

preserved. 

Two metrics are used to express DP guarantee of 

Machine learning algorithm, 

1. Delta (δ) - It bounds the probability of data. 

A rule of thumb is to set to be less than the 

inverse of the size of our training dataset. 

The model is developed to 10^-5 as the 

MNIST dataset has 60,000 training points. 

2. Epsilon (ϵ) – Measures the robustness of 

data privacy. Provides the strength of privacy 

guarantee by including the probability of 

dataset through varying single training 

points. A smaller ϵ value implies better 

privacy protection. 

Tensor flow provides the output values of 

training data through batch size, noise 

multiplier, epochs training, number of training 

points n. 

Result:  

DP- SGD outcome with sampling rate is 0.417%

, and noise_multiplier is 1.3 iterated over 3600 

steps, and then it satisfies the Differential privac

y with epsilon is 0.942 and delta(δ) is 1e-05The 

optimal RDP order is 17.0. The tool reports tha

t the hyperparameters which having the trained 

model have an ϵ value of 1.18. 

 

7. Future scope in this work 

Privacy guarantee: In today's scenario, the work 

is continuously developing in the privacy 

section. The frameworks are developing to 

secure functional evaluation and securing 

multiparty computation where input is splatted, 

and the focus is on avoid leakage of information. 

Another approach is k-anonymity which has 

theoretical solid and empirical limitations, but 

differential privacy provides an analytical 

framework to guess the datasets. So this can be 

applied to large machine learning tasks that 

differ from target models. 

Model class: In recent work, the design and 

evaluation of a system for distributed neural 

network training. The sanitization relies on an 

additive noise mechanism, and as an additive 

mechanism based on sensitivity estimate, it can 

be improved to a strong sensitivity guarantee. 

It can even be an attack model trying to specify 

user data from the model volume. The number 

of training data points in the model can identify 

appropriate and quantified as the risk to privacy. 

Once the reliability of the dataset is formalized, 

we can go towards differentially private 

optimizers to more complex and lengthy tasks in 

Computer network systems and Natural 

Language processing to next-level architecture. 

8. Conclusion 

The learning from this training model theory is 

seen in the tuning noise_multiplier mechanism, 

which attributed to a considerable depth with 

gradient manipulation is ineffective. Through 



 

 
 

the TensorFlow data library code, if we observe 

that the value of epsilon is independent of the 

training model and only depends on noise 

multiplier, batch size, epochs, and delta values 

we obtained from data. Epsilon has good 

strength to measure the amount of risk to 

privacy. 

A new tool that may be of independent interest 

is the mechanism of privacy tracking, the 

moment accountant. It permits tight automated 

security to the complex composite mechanism 

that is beyond the composite theorem. There is 

no requirement metric for measuring the 

opaque model volume that can reveal small 

information about the user. 
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