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 Abstract 

This paper shows the study of complex numbers in polar form and its properties. This includes De Moivre’s 

theorem, and the nth roots of a complex number. The various ways of expressing a complex number are 

shown: standard form and polar form are the two prominent methods of expressing complex numbers. Each 

type of expression has its own characteristics. They hold their individual pros and cons when approaching 

mathematical problems. The benefits of using the polar form rather than the standard form are explored and 

shown, while looking deeper into the polar form’s characteristics. These characteristics play a huge role in 

how problems are solved, and its application is shown in this paper.  

 

1. Complex Numbers 

1.1. The Standard Form 

A complex number can be expressed in the 

standard form: a + bi 

In the standard form, a represents the real part, 

while b  represents the imaginary part of the 

number. i  is a symbol that represents the unit: 

√−1 
 

For instance, the number 3 + 2i  is a complex 

number that is expressed in standard form. 

This number can be expressed on the complex 

plane (the vertical axis represents the imaginary 

part while the horizontal axis represents the real 

part) 

 

 

1.2. The Polar Form 

A complex number can be expressed in the polar 

form through the expression r(cos(θ) +

 isin(θ)). In the polar form,  cos( θ) represents 

the real part while sin(θ) represents the imaginary 



 

 

part of the number. r is called the modulus and it 

represents the magnitude of the complex number. 

θ is called an argument and it represents the angle 

between the positive real axis and the complex 

number. 

For instance, the number  4 (cos (
2π

3
) +

 isin (
2π

3
)) is a complex number that is expressed 

in polar form. 

In this number, the modulus, or magnitude is 

equal to 4. Therefore, the point of the complex 

number must be on the circumference of the circle 

with radius 4. Also, the argument, or the angle 

from the positive x axis is 120°. Therefore, the 

point of the complex number will be in the second 

quadrant.  

This number can also be expressed in a complex 

plane: 

 

1.3. Relationship between Standard and Polar 

Form 

The polar and standard form are interrelated 

together in that they can be mathematically 

converted from one to another. 

1.3.1 Standard to Polar Form 

Let’s consider that we have a complex number a +

bi in the standard form. 

To covert this to the polar form, we must initially 

find the magnitude of the number r, then find the 

angle θ.  

  

Refer to the diagram in the previous page: 

r2 = a2 + b2 

In the equation above, because a and b represent 

the length of the real and imaginary part of a 

complex number, a and b form a right-angle 

triangle, and the Pythagorean theorem can be used 

to find the magnitude of the complex number.  

θ = tan−1 (
b

a
) 

In the equation above, we are using tangents to 

find the angle which can be found using the angle 

between the number and the positive x real axis. 

The angle must be measured going 

counterclockwise from the x axis.  

Example) Convert −2 + 2i into the polar form 

 r2 = a2 + b2 = (−2)2 + (2)2 = 4 + 4 = 8  

 r = 2√2 
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 θ = tan−1 (
b

a
) 

Therefore, 

 θ = tan−1 (
2

−2
) = −

π

4
  

 tan(θ) = −
π

4
+  πn 

The complex number −2 + 2i  is in the second 

quadrant, so we must find the corresponding angle 

in the second quadrant. Therefore, θ = −
π

4
+ π ∗

1 =
3π

4
 

Thus,  

 z = 2√2(cos (
3π

4
) + isin (

3π

4
)) 

 

1.3.2. Polar to Standard Form 

 

 

 

The diagram above presents a complex number on 

a complex plane. As shown in the graph above, the 

complex number creates a right-angled triangle on 

the complex plane.  

This represents the following complex number: 

r(cos(θ) + isin(θ)) 

This number can be translated to the standard 

form. 

Because the complex number formed a right 

triangle,  

       sin(θ) =
oppoosite

hypotenuse
=

b

r
 

b = rsin (θ) 

 

       cos(θ) =
adjacent

hypotenuse
=

a

r
 

a = rcos(θ) 

Therefore,  r(cos(θ) + isin(θ) = a + bi 

Example) Given that z = √2(cos
7π

6
+ i sin

7π

6
) 

Let us covert this into the standard form a + bi: 

  

 a = rcos(θ) = √2 cos
7π

6
= −

√6

2
 

  b = rsin (θ) = √2 sin
7π

6
= −

√2

2
   

 Thus, √2 (cos
7π

6
+ i sin

7π

6
) = −

√6

2
−

√2

2
i 

 

2. Product and Quotient of Complex Numbers 

2.1. Product 

The product of two complex numbers in the polar 

form can be found using the method below. 

The product of two complex numbers in the 

standard form can be found using the method 

below: 

z1× z2 = (a1 + b1i)(a2 + b2i) 

          = a1a2 + a1b2i + a2b1i − b1b2 

         =  a1a2 - b1b2 + i(a1b2 + a2b1) 

Two complex numbers z1 and z2 are in the polar 

form: 

z1 = r1(cos(θ1) + isin(θ1)) 

𝜃 

a 

Re 



 

 

z2 = r2(cos(θ2) + isin(θ2)) 

z1 ×  z2 =  r1(cos(θ1) +  isin( θ1 )) ×

r2(cos (θ2) +  isin(θ1)) 

          =  r1r2(cos(θ1) +  isin( θ1 ))(cos (θ2) +

 isin (θ2)) 

          =  r1r2(cos(θ1)cos(θ2) −

icos(θ1)sin(θ2) +  isin(θ1)cos(θ2) +

sin(θ1)sin(θ2)) 

          =  r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))  ; 

simplified through trigonometric sum and 

difference formula    

 

Example: 

The following example shows the method of the 

product of two complex numbers in the polar 

form:   

z1 = (−2 + 2i),  z2 = (1 − √3i) 

 z1 = r1(cos(θ1)  +  isin(θ1)) 

 r1 = √a2 + b2  

 r1 = √(−2)2 + (2)2 

 r1 = 2√2 

 θ1 = tan−1 (
a

b
) 

 θ1 = tan−1 (
−2

2
) 

 θ1 =
3π

4
   

Therefore, z1 = 2√2(cos
3π

4
 +  isin

3π

4
) 

 z2 = r2(cos(θ2)  +  isin(θ2)) 

 r2 = √a2 + b2  

 r2 = √(1)2 + (−√3)2 

 r2 = 2 

 θ2 = tan−1 (
a

b
) 

 θ2 = tan−1 (
1

−√3
) 

 θ2 =
11π

6
   

Therefore, z2 = 2(cos
11π

6
+ i sin

11π

6
) 

Product of complex numbers formula: 

 z1 × z2 = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)) 

 z1 × z2 = 2√2 ∗ 2(cos (
3π

4
+

11π

6
) + i sin (

3π

4
+

11π

6
)) 

 z1 × z2 = 4√2(cos
31π

12
+ i sin

31π

12
) 

 z1 ×  z2 = 4√2(cos
7π

12
+ i sin

7π

12
) 

Using the polar form allows us to find the product 

of two complex numbers very easily. When 

multiplying the complex numbers, we can multiply 

the magnitudes together and the arguments can 

simply be added together. As we start to multiply 

more than three complex numbers, it will become 

easier to use the polar form.  

 

2.2. The Quotient  

Quotient of two complex numbers: 

z1

z2
  =  

r1(cos (θ1) + isin (θ1))

r2(cos (θ2)+ isin (θ2))
 

     = 
r1(cos (θ1) + isin (θ1))

r2(cos (θ2)+ i(sin (θ2))
×  

(cos(θ2)− isin (θ2))

(cos(θ2)− isin (θ2))
 

=

r1(cos(θ1)cos(θ2)−icos(θ1)sin(θ2)+ isin(θ1)(cos(θ2)+sin(θ1)sin(θ2))

r2(cos2(θ2)+sin2(θ2))
    

 

     = 
r1

r2
 (cos(θ1 − θ2) + i sin(θ1 − θ2))  ;   

simplified through trigonometric sum and 

difference formula    

 

 



 

 

Example) 

The following example shows the method of the 

quotient of two complex numbers in the polar 

form  

z1 = (1 + i),  z2 = (1 + √3i) 

 z1 = r1(cos(θ1)  +  i(sin(θ1)) 

 r1 = √a2 + b2  

 r1 = √(1)2 + (1)2 

 r1 = √2 

 θ1 = tan−1 (
a

b
) 

 θ1 = tan−1 (
1

1
) 

 θ1 =
π

4
   

Therefore, z1 = √2(cos
π

4
 +  isin

π

4
) 

 z2 = r2(cos(θ2)  +  isin(θ2)) 

 r2 = √a2 + b2  

 r2 = √(1)2 + (√3)2 

 r2 = 2 

 θ2 = tan−1 (
a

b
) 

 θ2 = tan−1 (
1

√3
) 

 θ2 =
π

6
   

Therefore, z2 = 2(cos
π

6
+ i sin

π

6
) 

Quotient of complex numbers formula: 

 
z1

z2
  =   

r1

r2
 (cos(θ1 − θ2) + i sin(θ1 − θ2))         

 
z1

z2
=

√2 

2
 (cos (

π

4
−

π

6
) + i sin (

π

4
−

π

6
)) 

 
z1

z2
=

√2 

2
(cos

π

12
+ i sin

π

12
) 

 

 

 

3. De Moivre’s Theorem 

From the product of complex numbers, “De 

Moivre's Theorem” can be derived: 

Given that z = r(cos(θ) + isin(θ)) 

zn = rn(cos(nθ) + isin(nθ)) 

z1 × z2 = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))  

Therefore,  

𝑧2 = 𝑧 ∗ 𝑧 = 𝑟2(cos(𝜃)) + 𝑖𝑠𝑖𝑛(2𝜃)) 

𝑧3 = 𝑧2 ∗ 𝑧 = 𝑟2(cos(2𝜃) + 𝑖𝑠𝑖𝑛(2𝜃))

∗ 𝑟(cos(𝜃) + 𝑖𝑠𝑖𝑛(𝜃)) 

= 𝑟3(cos(3𝜃) + 𝑖𝑠𝑖𝑛(3𝜃)) 

𝑧4 = 𝑧3 ∗ 𝑧 = 𝑟3 (cos(3𝜃) + 𝑖𝑠𝑖𝑛(3𝜃)) ∗

𝑟(cos(𝜃) + 𝑖𝑠𝑖𝑛(𝜃) 

= 𝑟4(cos(4𝜃) + 𝑖𝑠𝑖𝑛(4𝜃)) 

𝑧𝑛 = 𝑧𝑛−1 ∗ 𝑧 = 𝑟𝑛−1(cos(𝑛 − 1) 𝜃 +

𝑖𝑠𝑖𝑛(𝑛 − 1)𝜃) ∗  𝑟(cos(𝜃) + 𝑖𝑠𝑖𝑛(𝜃) 

= 𝑟𝑛(cos(𝑛𝜃) + 𝑖𝑠𝑖𝑛(𝑛𝜃) 

 

Proof by induction: 

𝑝(𝑛): (r × cis(θ))𝑛 = 𝑟𝑛(𝑐𝑖𝑠(𝑛𝜃)) 

𝑊ℎ𝑒𝑛 𝑛 = 1 

𝑝(1) ∶ 𝑟(𝑐𝑖𝑠(𝜃)) = 𝑟1(𝑐𝑖𝑠(1 × 𝜃)) 

Therefore, 𝑛 = 1 is true 

Assume 𝑛 = 𝑘 is true 

𝑝(𝑘): (r × cis(θ))
k

= 𝑟𝑘(𝑐𝑖𝑠(𝑘 × 𝜃)) 

Consider 𝑛 = 𝑘 + 1 

𝑝(𝑘 + 1) ∶  (r × cis(θ))
k+1

= 𝑟𝑘(𝑐𝑖𝑠(𝑘 × 𝜃)) × (𝑟

× 𝑐𝑖𝑠(𝜃)) 

𝑝(𝑘 + 1) ∶  (r × cis(θ))
k+1

= 𝑟𝑘 × 𝑟 (𝑐𝑖𝑠(𝑘 ×

𝜃 + 𝜃))  ; When multiplying two complex 



 

 

numbers, the argument of the product is the sum 

of the arguments.  

𝑝(𝑘 + 1) ∶  (r × cis(θ))
k+1

= 𝑟𝑘+1(𝑐𝑖𝑠(𝜃(𝑘 + 1))) 

Therefore, because 𝑛 = 1  is true and assuming 

that p(k) is true 𝑛 = 𝑘 + 1  was proven to be true. 

Hence by proof by induction, 𝑝(𝑛) is true.  

The number of complex numbers that are 

multiplied has a direct relationship with the 

modulus. 

Because the modulus constantly multiplies with 

each other, the modulus for zn is rn 

The argument, on the other hand, forms a sum, 

proportional to the nth power of the complex 

number. The argument is constantly added on top 

of each other, so the argument for zn is nθ 

Example) 

In a certain scenario, we are asked to find 

( 
1

2
+

1

2
i )5. To do this, we must first convert the 

complex number into the polar form, then use De 

Moivre’s theorem. 

 z =
1

2
+

1

2
i 

 r2 = a2 + b2  

 r =  √(
1

2
)2 + (

1

2
)2 

 r = (
√2

2
) 

 θ = tan−1(
a

b
)  

 θ =  tan−1(
1

2
1

2

)  

 θ =
π

4
 

 z  =
√2

2
(cos (

π

4
) + i sin (

π

4
)) 

 

 z5 =  r5(cos(5θ) + isin(5θ)) 

      = (
√2

2
)

5

(cos
5π

4
+ isin

5π

4
) 

         =
√2

8
(−

√2

2
−

√2

2
i) 

4. Nth Root of Complex Numbers 

Given than zn = r, given that both z and r are 

complex numbers and n is a natural number, 

The roots of a complex number can be found 

using the formula below.  

 zk = r
1

n (cos (
θ+2kπ

n
) + isin (

θ+2kπ

n
)) , k =

0, 1, 2 … n − 1 

According to the fundamental theorem of algebra, 

every polynomial with degree of n has n roots.  

Therefore, for instance, if the complex number “z” 

has power 6, so n=6, 

There would be 6 roots in the equation zn = r 

These roots are then evenly spaced out on the 

complex plane, as shown by the graph below 

Ex) 

z6 = i 

 

zk = r
1
n  (cos (

θ + 2kπ

n
) + isin (

θ + 2kπ

n
)) 

 

z0 = cos (
𝜋

12
+

2(0)π

6
) + isin (

𝜋

12
+

2(0)π

6
) 

 

z1 = cos (
𝜋

12
+

2(1)π

6
) + isin (

𝜋

12
+

2(1)π

6
) 

 

z2 = cos (
𝜋

12
+

2(2)π

6
) + isin (

𝜋

12
+

2(2)π

6
) 

 



 

 

z3 = cos (
𝜋

12
+

2(3)π

6
) + isin (

𝜋

12
+

2(3)π

6
) 

 

z4 = cos (
𝜋

12
+

2(4)π

6
) + isin (

𝜃

12
+

2(4)π

6
) 

 

z5 = cos (
𝜋

12
+

2(5)π

6
) + isin (

𝜋

12
+

2(5)π

6
) 

 

Each of the six roots of the polynomials are 

divided into equally distributed 60° spaces.  

 

 

5. Problem 

A polynomial f(x) has the factor-square property 

(or FSP) if f(x)  is a factor of f(x2). For instance, 

g(x) = x − 1 and h(x) = x have FSP, but k(x) =

x + 2  does not. 

 

Multiplying by a nonzero constant “preserves” FSP, 

so we restrict attention to polynomials that are 

monic (i.e., have 1 as highest-degree coefficient). 

 

What patterns do monic FSP polynomials satisfy? 

To make progress on this topic, investigate the 

following questions and justify your answers 

Part A.) Are x and x − 1 the only monic 

polynomials of degree 1 with FSP? 

We can represent f(x) with the following: 

   f(x) = x + c   

 f(x2) = (x2 + c) 

 

 f(x2) = (x + c)(q(x)) ;  x + c, or f(x), must be 

a factor of f(x2) to be an FSP 

Therefore, x2 + c = (x + c)(q(x)) 

Using the remainder theorem, we know that when 

x = −c, (x + c) is a factor of x2 + c 

When x = −c,  

     c2 + c = (−c + c)(q(x)) 

    c2 + c = 0 

 c(c + 1) = 0 

             c = −1, 0 

Therefore, 

x  and x − 1  are the only monic polynomials of 

degree 1.  

 

Part B.) List all the monic FSP polynomials of 

degree 2. 

To start, note that x2 , x2 − 1, x2 − x, and  x2 +

x + 1 are on that list. Some of them are products 

of FSP polynomials of smaller degree. For instance, 

x2  and x2 − x arise from degree 1 cases. However, 

x2 − 1  and x2 + x + 1  are new, not expressible 

as a product of two smaller FSP polynomials. 



 

 

Which terms in your list of degree 2 examples are 

new? 

f(x) = x2 + ax + b 

f(x2) = x4 + ax2 + b 

x4 + ax2 + b = (x2 + ax + b)(q(x)) 

x2 + ax + b = 0 

x =
−a ± √a2 − 4b

2
 

x4 + ax2 + b = (x2 + ax + b)(q(x)) = 0 

(
−a ± √a2 − 4b

2
)4 + a(

−a ± √a2 − 4b

2
)2 + b

= 0 

When x =
−a+√a2−4b

2
 

Binomial theorem:  

 (a + b)4 

 =  a4 + 4a3b + 6a2b2 + 4ab3 + b4 

The coefficients of the binomial theorem are 

found through combinations or the pascal triangle. 

Let us first expand this part of the equation: 

(
−a + √a2 − 4b

2
)4 

Using the binomial theorem, we can expand the 

top part of the term 

a4 + 4(−a)3√a2 − 4b + 6(−a)2√a2 − 4b
2

+ 4(−a)√a2 − 4b
3

+ √a2 − 4b
4

24
 

a4 − 4a3√a2 − 4b + 6a4 − 24a2b − 4a(a2 − 4b)
3
2 + a4 − 8a2b + 16b2

24
  

Let us then expand the next part of the equation: 

a(
−a + √a2 − 4b

2
)2 

We can expand the top part of the equation 

a(−a + √a2 − 4b)
2

22
 

a(a2 + 2(a)( √a2 − 4b) + a2 − 4b)

22
 

We can then combine those two parts to create the 

following: 

 
8a4−4a3√a2−4b−32a2b−4a(a2−4b)

3
2+16b2

24 +

a(a2−a√a2−4b−2b)

2
= 0 

22(2a4 − a3√a2 − 4b − 8a2b − a(a2 − 4b)
3
2 + 4b2)

24

+
a3 − a2√a2 − 4b − 2ab

2
 = 0 

2a4 − a3√a2 − 4b − 8a2b − a(a2 − 4b)
3
2 + 4b2

4

+
a3 − a2√a2 − 4b − 2ab

2
= 0 

Solving the problem using remainder theorem and 

binomial expansion, the problem becomes very 

complex and difficult to solve. 

It is therefore in our best interest to resort to other 

methods: 

f(x) = anxn + an−1xn−1 + ⋯ + a1x + a0 

 

Let us consider that r1, r2, … . rn  

An FSP is when f(x2) = f(x) ∗ q(x)  

 Given that, x = r1 

f(r1
2) = f(r1)q(r1) = 0 

Therefore, f(r1
2) = 0,   

And if the roots of f(x)  are r1, r2, … . rn , then 

r1
2, r2

2, … . rn
2 are also roots of f(x) 

Some roots therefore MUST overlap, and ri
2 = rj 

If a root of f(x) is rn = mn(cos θ + i sin θ) 

Using the De Moivre’s Theorem, we can devise 

that 

rn
2 = mn

2(cos 2θ + i sin 2θ) 

Therefore, 



 

 

mn = mn
2 

mn − mn
2 = 0 

mn(mn − 1) = 0 

mn = 0,1 

This shows that the magnitude of the root must be 

either 0 or 1. This also shows that if there is a root 

with an argument of θ, then there must also be a 

root with an argument of 2θ 

 

When f(x) is in degree two, we can. Split this into 

two different cases: when the roots of f(x) have two 

real numbers, or when f(x) has roots that are 

complex conjugate pairs: 

-1 has an argument of 180°. If it is multiplied by 2, 

then it becomes 360° or 0°. Therefore 1, which has 

an argument of 0°, must also exist as the other root 

when -1 is a root. 

When there are two real roots, there are the 

following possibilities: 

The roots are (0, 0) meaning f(x) = x2 

The roots are (1, 1) meaning f(x) = (x − 1)2 =

x2 − 2x + 1 

The roots are (1, -1) meaning f(x) = (x + 1)(x −

1) = x2 − 1 

The roots are (0, 1) meaning. f(x) = x(x − 1) =

x2 − x 

When there are two complex roots, a conjugate 

pair would be found: 

Complex conjugates have a relationship such that 

when the argument of one complex number is θ, 

the other is −θ. This is because when one of the 

complex numbers are a + bi,  the other is a −

bi. This means that only the sign imaginary part of 

the complex number is changed. Therefore, in 

polar form, the two complex numbers must have a 

relationship in which they are reflected across the 

real axis.  

Therefore: 

z1 = r1(cosθ + isinθ)  

z2 = r2(cos(−θ) + sin(−θ))  

 

Because they are FSP’s, we know that  

−θ = 2θ ± 360n  

 3θ = ±360n  

   θ = ±120n  

   θ = 0°, 120°, 240°  

 

In this case, 0° is a real number, and does not fit 

under the category of “two complex roots”. 

Therefore, it can be ignored for this part of the 

question.  

In the case of 120°, −θ = −120°, and 120° fits 

under the condition θ = −θ. Because −120° =

240°, and 120° and 240° are complex conjugates, 

θ = 120°, 240°  could be considered a solution 

for this question. 

In the case of 240°, −θ = −240°, and 240° fits 

under the condition θ = −θ. Because −240° =

120°, and 120° and 240° are complex conjugates, 

θ = 120°, 240°  could be considered a solution 

for this question. 

z1 = cos120° + i sin120°  

z2 = cos 240° + i sin 240°  

 

This is shown in the diagram below: 



 

 

 

  f(x) = (x − ( −
1

2
+

√3 

2
i)) (x − (−

1

2
−

√3

2
i)) = x2 + x + 1  

Part C.1.) List all the new monic FSP 

polynomials of degree 3. 

When f(x) is in degree three, we can split this into 

two different cases: when the roots of f(x)  has 

three real roots and when 1 real root and two 

complex roots. 

Case 1.) When there are three real roots, there are 

the following possibilities: 

The roots are (0,0,0) meaning f(x) = x3 

The roots are (0,1,-1) meaning f(x) = x(x −

1)(x + 1) = x3 − 

The roots are (1, 1, 1) meaning f(x) = (x − 1)3 =

x3 − 3x2 + 3x − 1 

The roots are (1, -1, 1) meaning f(x) = (x +

1)(x − 1)2 = x3 − x2 − x + 1 

The roots are (1, -1, -1) meaning f(x) = (x +

1)2(x − 1) = x3 + x2 − x − 1 

The roots are (0, 1, 1) meaning f(x) = x(x −

1)2 = x3 − 2x2 + x 

The roots are (0, 0, 1) meaning f(x) = x2(x +

1) = x3 + x2 

Case 2.) When there are two complex conjugate 

roots and one real root, we can have the following 

scenario: 

From the reasoning from part B, we know that 

when there are two complex conjugate roots, the 

arguments must be 120° and 240°.  

The two possible solutions are when x = 0, 1 and 

there are two other complex conjugate roots.  

 

When the real root is 1: 

  

 

 f(x) = (x − 1) (x − ( −
1

2
+

√3 

2
i)) (x − (−

1

2
−

√3

2
i)) = x3 − 1 

 

When the real root is 0: 



 

 

 

    

f(x) = x (x − ( −
1

2
+

√3 

2
i)) (x − (−

1

2
−

√3

2
i)) = x3 + x2 + x  

There is also another possibility of one complex 

pair and one real root. However, this means that 

the real root is -1, which is impossible as when a 

root is -1, another root must be 1.  

 

Part C.2.) List all the new monic FSP 

polynomials of degree 4. 

There are three cases we can create with 

polynomials of degree 4. When there are four real 

roots, a pair complex conjugate roots and two real 

roots, and two pairs of complex conjugate roots.  

 

Case 1.) When there are four real roots, we can 

create the following possibilities: 

The roots are (0,0,0,0) meaning f(x) = x4 

The roots are (0,0,0,1) meaning f(x) = x3(x −

1) = x4 − x3 

The roots are (0,0,1,1) meaning f(x) = x2(x −

1)2 = x4 − 2x3 + x2 

The roots are (0,1,1,1) meaning f(x) = x(x −

1)3 = x4 − 3x3 + 3x2 − x 

The roots are (1,1,1,1) meaning f(x) = (x −

1)4 = x4 − 4x3 + 6x2 − 4x + 1 

The roots are (0,0,1, -1) meaning f(x) = x2(x −

1)(x + 1) = x4 − x2 

The roots are (0, 1, 1, -1) meaning f(x) =

x(x + 1)(x − 1)2 = x4 − x3 − x2 + x 

The roots are (1,1,1, -1) meaning f(x) = (x +

1)(x − 1)3 = x4 − 2x3 + 2x − 1 

The roots are (1,1, -1, -1) meaning f(x) =

(x − 1)2(x + 1)2 = x4 − 2x2 + 1 

The roots are (0,1, -1, -1) meaning f(x) =

x(x − 1)(x + 1)2 = x4 + x3 − x2 − x 

The roots are (1, -1, -1, -1) meaning f(x) =

(x − 1)(x + 1)3 = x4 + 2x3 − 2x − 1 

 

Case 2.) When there are two real roots and a pair 

of complex roots, we can have the following 

scenario: 

The real roots that fit with the combination of 0° 

and 0° are the following: 

(0, 1), (1, 1), (0, 0) 

The two complex number conjugate that can be 

found and fit into this combination is 120°, 240°.  

The process finding was shown in the scenarios 

above.  

(0, 0, −
1

2
+

√3 

2
i, −

1

2
−

√3

2
i) 

 

(0, 1, −
1

2
+

√3 

2
i, −

1

2
−

√3

2
i) 



 

 

 

(1, 1, −
1

2
+

√3 

2
i, −

1

2
−

√3

2
i) 

 

These are shown graphically below: 

   

 

f(x) = x2 (x − ( −
1

2
+

√3 

2
i)) (x − (−

1

2
−

√3

2
i)) = x4 + x3 + x2  

 

   f(x) = (x − 1)2 (x − ( −
1

2
+

√3 

2
i)) (x −

(−
1

2
−

√3

2
i)) = x4 − x3 − x + 1  

 

f(x) = x(x − 1) (x − ( −
1

2
+

√3 

2
i)) (x −

(−
1

2
−

√3

2
i)) = x4 − x  

 

When two of the real roots have an argument of 

180° and 0°, the following cases can be found: 

(1, -1, i, -i) 

(1, -1, −
1

2
+

√3 

2
i, −

1

2
−

√3

2
i) 

The cases are represented in the following 

diagrams below: 

When the real roots are 1, -1: 



 

 

    

 f(x) = (x + 1)(x − 1)(x − i)(x + i) 

 

 f(x) = (x2 − 1)(x2 + 1) 

 f(x) = x4 − 1 

 

f(x) = (x + 1)(x − 1) (x − ( −
1

2
+

√3 

2
i)) (x −

(−
1

2
−

√3

2
i)) = x4 + x3 − x − 1  

 

 

 

Case 3.) There are also solutions when there are 

two pairs of complex roots: 

Given that the four complex roots have an 

argument of 𝜃, −𝜃, 𝜙, −𝜙 , as they must be 

conjugates, we know that one pair, 𝜃 𝑎𝑛𝑑 − 𝜃 , 

must have roots of 120° and 240° from the 

sections above.  

We must then find the potential roots of 

𝜙 𝑎𝑛𝑑 − 𝜙 . There are four potential cases of 

finding the pair of conjugate roots.  

a. 2𝜙 = 𝜙 + 2𝜋n 

This means that the roots of 𝜙 are real numbers 

and these cases have already been covered from 

above.  

b. 2𝜙 = −𝜙 + 2𝜋n 

 𝜙 =
2𝜋

3
,

4𝜋

3
 

The values of  𝜃, −𝜃, 𝜙, −𝜙  become 

2𝜋

3
,

4𝜋

3
,

2𝜋

3
,

4𝜋

3
, respectively, and the roots can be 

expressed as the following: 

 𝑓(𝑥) = (x − ( −
1

2
+

√3 

2
i))

2

(x − (−
1

2
−

√3

2
i))

2

 

 𝑓(𝑥) = 𝑥4 + 2𝑥3 + 3𝑥2 + 2𝑥 + 1 

c. 2𝜙 =
2𝜋

3
+ 2𝜋𝑛 

   𝜙 =
𝜋

3
+ 𝜋𝑛 

     𝜙 =
𝜋

3
,

4𝜋

3
 

The values of 𝜃, −𝜃, 𝜙, −𝜙  become 

2𝜋

3
,

4𝜋

3
,

𝜋

3
, −

𝜋

3
, respectively, and the roots can be 

expressed as the following:  



 

 

 𝑓(𝑥) = (x − ( −
1

2
+

√3 

2
i)) (x − (−

1

2
−

√3

2
i)) (x − (

1

2
+

√3

2
i)) (x − (

1

2
−

√3

2
i)) 

 𝑓(𝑥) = 𝑥4 + 𝑥2 + 1 

d. 2𝜙 =
4𝜋

3
+ 2𝜋𝑛 

 𝜙 =
2𝜋

3
+ 𝜋𝑛 

This makes the values of 𝜙 =
2𝜋

3
,

5𝜋

3
 

This is repetitive to the case found in ‘c’ as 
5𝜋

3
=

−
𝜋

3
, and can be disregarded 

Part D.) Are there monic FSP polynomials (of 

some degree) that have real number coefficients, 

but some of those coefficients are not integers? 

Explain your reasoning. 

 

In part A, B, and C, the problem was solved 

considering that the coefficients were real 

numbers. There was no restriction to the method 

that caused the coefficient values to specifically 

become integers. All cases regarding rational 

numbers were considered, and the coefficient 

values were all integers. Therefore, there are no 

FSP polynomials that have real number 

coefficients that are not integers.  

 

6. Conclusion 

To solve problem, I gave multiple attempts to use 

the standard form. However, upon several trials, I 

was able to understand that there were limitations 

within using the standard form, and the use the 

polar form was necessary. While it was possible to 

solve part A using the standard form, I found that 

the binomial theorem too stiff in that it did not 

connect the real and imaginary part of complex 

numbers. The polar was much more convenient in 

that it could express the complex number in a 

more flexible way using arguments. Arguments 

gave the complex numbers more flexibly in terms 

of multiplying, dividing, and manipulating, 

making it much easier to solve the problem.  


